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Abstract

The shortage of manually annotated data for In-
formation Extraction tasks in many languages
has been somewhat mitigated by the develop-
ment of multilingual language models. Thus, a
model fine-tuned in a high-resource language,
typically English, can be employed to generate
predictions in other (usually low-resource) lan-
guages. Previous research shows that in this
setting, commonly known as zero-shot cross-
lingual transfer, encoder-only models still out-
perform text-to-text Large Language Models
(LLMs) trained with vast amounts of data and
computational resources. In this work we ar-
gue that this is mostly caused by text-to-text
models mixing languages in their outputs when
applied to cross-lingual settings. This paper in-
troduces a Constrained Decoding Beam Search
algorithm that effectively addresses this issue.
A comprehensive empirical evaluation across
multiple tasks and languages demonstrate that,
when our method is applied to a LLM such as
mTO-XL, it helps not only to improve over the
unconstrained beam search baseline, but also
to outperform the zero-shot cross-lingual capa-
bilities of encoder-only models, especially for
languages that significantly differ from English.
We will make our code publicly available upon
publication.

1 Introduction

Current methods for Information Extraction (IE)
heavily rely on the availability of annotated train-
ing data (Min et al., 2023). However, supervised
models suffer from a significant decline in perfor-
mance when tested in out-of-domain settings (Liu
etal., 2021) and across different languages (Rahimi
et al., 2019). This suggests that achieving optimal
results would require manually creating annotated
data for every domain and language - a practice
that is often unfeasible in terms of cost and hu-
man labor, as demonstrated by the lack of manu-
ally annotated data for many languages (Joshi et al.,
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Figure 1: Average cross-lingual zero-shot F1 scores.
Models are trained only in English and evaluated on a
large set of diverse languages.

2020). Therefore, developing models for languages
and domain-specific tasks without readily available
training data remains an important challenge.

The shortage of manually annotated data for
many languages has been somewhat mitigated by
the appearance of multilingual language models
(Devlin et al., 2019; Conneau et al., 2020). These
models allow to perform zero-shot cross-lingual
transfer. Thus, a model fine-tuned in a high-
resource language, typically English, can be em-
ployed to label data in other (usually low-resource)
languages. Recently published text-to-text LLMs
(Xue et al., 2021; Touvron et al., 2023) have been
trained with more data and computational resources
than any modern encoder-only model and they are
achieving significant success in mono-lingual IE
evaluations (Sainz et al., 2023). However, recent
shared tasks centered on multilingual information
extraction (Fetahu et al., 2023) show that encoder-
only models like XLM-RoBERTa (Conneau et al.,
2020) and mDeBERTa (He et al., 2023) continue
to be the best performing option.

Text-to-text approaches to zero-shot cross-
lingual IE face multiple challenges: In this setting



Text2Text

Model

{Turkiako selekzioan eta Realean jokatu zuen.

Constrained Decoding

<Organization> Turkiako selekzioan </Organization>
eta <Organization> Realean </Organization> jokatu zuen.

Unconstrained Decoding

<Organization> Turkish selekzioan eta <Organization>
Reale</Organization> an jokatu zuen.

Figure 2: Comparison between a valid (top green) and invalid (bottom red) output structure to represent a Named
Entity Recognition task. English translation: (They) played in Real and in the Turkish national team.

we must first establish a text-based input and out-
put representation for the specific task. However,
models sometimes fail in strictly adhering to the
output structure. Moreover, as demonstrated by
our experiments, text-to-text models often produce
outputs mixing the training language and the target
language, which compromises their performance.
These issues are illustrated by Figure 2, where
the incorrect output mixes English and Basque
(Turkiako-Turkish) and incorrectly breaks the orga-
nization entity ‘Realean’.

In this paper we introduce a Constrained De-
coding Algorithm that addresses these issues.
The model’s decoding is constrained to ensure a
valid HTML-style annotation structure while craft-
ing an output sentence that mirrors the words of
the unlabeled input. This technique can be seam-
lessly integrated with any text-to-text model with-
out any significant increase in the decoding cost.
Although constrained generation has been previ-
ously explored in a monolingual setting (Guo and
Roth, 2021), we adapt and extend this approach
for zero-shot cross-lingual IE. Our new decoding
algorithm is evaluated on three popular IE tasks for
25 languages of varied morphological characteris-
tics. Empirical results reported by Figure 1 indicate
that our method, when applied to a LLM such as
mTO0-XL (Muennighoff et al., 2023), not only sur-
passes the unconstrained beam search baseline but
also outperforms the zero-shot cross-lingual per-
formance of encoder-only models. Our method
is especially successful for languages that signifi-
cantly differ from English.

To the best of our knowledge, our new technique
achieves the best zero-shot model-based cross-
lingual transfer results to date.

2 Related Work

The formulation of information extraction tasks in
a constrained text-to-text format has been previ-
ously explored (Vinyals et al., 2015; Xiao et al.,
2016; Dyer et al., 2016). However, it was with

the emergence of large-scale text-to-text language
models, capable of addressing a diverse array of
Natural Language Processing (NLP) challenges
when framed as text-to-text problems (Raffel et al.,
2019), that this approach garnered significant atten-
tion within the community. Lester et al. (2020) pro-
pose a Named Entity Recognition system that uses
Viterbi decoding (Forney, 1973) with heuristically
determined transition probabilities that prohibit ille-
gal transitions. This achieves similar performance
to conditional random field (CRF) models (Laf-
ferty et al., 2001), but it is more computationally
efficient. Cao et al. (2021) and De Cao et al. (2022)
propose a sequence-to-sequence system for Mul-
tilingual Entity Linking, which can generate en-
tity names from left to right, token by token, in
an autoregressive manner, conditioned by the con-
text. To ensure that only valid entity identifiers
are generated, they employ a prefix tree to enable
constrained beam search.

Closer to our work, which focuses on constrain-
ing LLMs to adhere to a pre-defined output struc-
ture, Lu et al. (2021) present a constrained de-
coding algorithm that forces the model to adhere
to a pre-defined output structure during inference.
Similarly, Zheng et al. (2023) and He and Choi
(2023) both propose constrained decoding algo-
rithms that improve semantic parsing. Instead of
constraining the generation of output text, Cui et al.
(2021) perform Named Entity Recognition (NER)
by computing the probability of a text span fill-
ing predefined structures. Instead of flattening the
structured output into a sequence, Liu et al. (2022)
model the output as sequences of actions. These
actions are predicted in an autoregressive manner
with LLMs and executing the actions ought to gen-
erate the structured output. Their approach im-
proves upon previous methods in Named Entity
Recognition, end-to-end relation extraction, and
co-reference resolution. With the aim of projecting
labels across languages in sequence labelling tasks,
Garcia-Ferrero et al. (2023) employs unconstrained
generation to produce a large number of candi-



dates, subsequently discarding the invalid ones.
Compared to constrained generation this method
demands significant computational resources and
does not guarantee the generation of a valid output.

Although previous research has demonstrated
the effectiveness of constrained decoding for in-
formation extraction, most of it has focused on
monolingual settings. Thus, Guo and Roth (2021)
propose an algorithm that employs constrained de-
coding of text-to-text LLMs for zero-shot NER
in low-resource languages. First, they translate
labeled data in a word-by-word manner using a
dictionary. Then, they construct target language
text from the source-language named entities using
a pretrained language model. They utilize con-
strained decoding to ensure the presence of entities
in the generated text. This data-transfer method
was later surpassed by model-based cross-lingual
transfer method (Garcia-Ferrero et al., 2022) which
uses encoder-only models trained with English la-
belled data to directly label sentences in a different
target language.

3 Approach

In this section we describe our representation of
an Information Extraction task such as Sequence
Labelling by applying our new Constrained text-
to-text approach. Our algorithm can be used for
both encoder-decoder (Vaswani et al., 2017) and
decoder-only (Liu et al., 2018) architectures, as
well as any other auto-regressive architecture.

3.1 Input-Output Representation

Obama went to New York .

Text2Text

Model

<Person> Obama </Person> went to
<Location> New York </Location> .

Figure 3: Text-to-Text representation of the Sequence
Labeling task. Given an input sentence, the model must
generate the same sentence annotated with html-style
tags.

The model is prompted with a sentence to label.
The expected output is the same sentence anno-

tated with HTML-style tags. An example is pro-
vided in Figure 3. The HTML tags for each task
are added as special tokens to the model’s vocabu-
lary. Previous research (Raman et al., 2022) found
that different structures do not greatly impact the
performance of the model so we use HTML-style
tags because the format is easy for humans to read.
Furthermore, LLMs, which have been trained on
vast amounts of data from the Internet, are already
familiar with this format, and implementing a con-
strained grammar for this structure is quite straight-
forward. In any case, our method can be adapted to
any other task representation. For encoder-decoder
models, the unlabeled sentence is given as input
into the encoder block, while the decoder block
generates the labeled output. For encoder-only
models, we use the token ‘->’ during training as a
separator between the unlabeled and labeled sen-
tence. We also experimented with generating only
the labeled spans as output (i.e., <Person> Obama
</Person> <Location> New York </Location>),
but we obtained worse results.

3.2 Constrained decoding

The constrained decoding algorithm aims to ensure
that the output sequence contains the same words
as the input sequence. This prevents hallucina-
tions, which are very common when a model is
trained in one language and then used to label sen-
tences in another language. It also ensures that the
output sequence is a valid HTML annotation, with
no unclosed tags, empty tags, or other errors. This
prevents the generation of unparseable outputs.
We implement our constrained decoding algorithm
using the Finite State Automaton described in Fig-
ure 4. At each state, the model can generate only a
set of valid tokens. This set includes copying the
next word from the input (if the word is split by
the tokenizer into multiple tokens, all of them are
copied to prevent splitting of words). It can also
open an HTML tag, but only if no tag remains open,
or close it, but only if we have already opened a tag
and copied a word. The generation process ends
when all the words in the input have been copied
into the output and no label remains open.

Given a sequence (z1,Z2,...,o;—1) that has
been generated thus far and a set S; of valid next
tokens at step ¢, the next token x; is selected as:

xy = argmax P(x|z1, T2, ..., 1)
€S

Where P(z|z1,x2,. ..,z 1) represents the condi-
tional probability of token = given the prior tokens.
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Figure 4: Our Constrained Decoding Algorithm defined as a Finite State Automaton.

Any token not in S; is given a probability of zero,
ensuring that the generated sequence adheres to the
constraints. The probability for each token z; € S
is computed using the softmax function applied to
the model predictions:

exp(z;)
>_; exp(x;)

The probability of the generated sequence up to
step 1" is computed as:

P(x;|lzy, 29, .ccimi—1) =

T
P(x1.7|<bos>) = Z log x4
t=1

While most previous constrained decoding algo-
rithms are limited to greedy decoding, we imple-
ment a constrained beam search approach. We
keep track of the top k most probable sentences at
each step ¢, ensuring a broader exploration of the
solution space and yielding higher-quality output
sequences that adhere to the given constraints. Our
constrained beam search approach adds very little
overhead compared to the standard beam search de-
coding strategy. At each step, our only additional
task is to compute the set of valid next tokens and
states. It’s important to note that our constrained
beam search decoding algorithm merely eliminates
invalid sequences from the search space. Conse-
quently, the constrained beam search will always
yield an output that is at least as good as, if not
superior to, unconstrained beam search.

4 Experimental Setup

The datasets used address to three information ex-
traction tasks which are illustrated by Figure 5.

Named Entity Recognition (NER): This task con-
sists of detecting named entities and classifying
them according to some pre-defined categories. We
evaluate the models on MasakhaNER 2.0 (Adelani
et al., 2022), a manually annotated NER dataset for
20 African languages.We train the models with the
CoNLLO3 (Tjong Kim Sang, 2002) English train-
ing split. We focus on named entities referring to
Person, Location and Organization.

Opinion Target Extraction (OTE): Given a re-
view, the task is to detect the linguistic expression
used to refer to the reviewed entity. We use the
English SemEval 2016 Aspect Based Sentiment
Analysis (ABSA) datasets (Pontiki et al., 2014).
The English training split is used for fine-tuning;
results are reported on the Spanish, French, Dutch,
Russian and Turkish test sets.

Event Extraction (EE): It consists of detecting
and classifying event mentions according to some
pre-defined class-inventory. We use the English
ACEOQS5 (Walker et al., 2006) training split for train-
ing and the Chinese test split for evaluation. We
also perform the Entity Mention Extraction task
separately as additional indicator of performance.

4.1 Language Models and baselines

Text-to-text Models: We use mTO-XL (Muen-
nighoff et al., 2023) 3.7 Billion parameter model in
all our experiments. mTO-XL is an mTS (Xue et al.,
2021) pretrained multilingual language model fine-
tuned in the cross-lingual task mixture xP3. We
also experimented with mTS5 itself, BLOOM (Scao
et al., 2022), BLOOMZ (Muennighoff et al., 2023)
and StableLM (Tow et al., 2023) but we found out
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Figure 5: Information Extraction Tasks in our experiments

that mTO displayed superior zero-shot cross-lingual
capabilities.

Baselines: We assess the performance of our con-
strained beam search algorithm (Cons) against
the unconstrained decoding baseline (Base). Af-
ter fine-tuning, we test the same checkpoint us-
ing both constrained and unconstrained decoding.
Additionally, our method is compared to popu-
lar encoder-only models, which currently set the
benchmark for zero-shot cross-lingual transfer and
have been widely adopted by the community. Thus,
we evaluate mDeBERTa V3 (He et al., 2023), an
86-million-parameter model, and GLOT500 (Imani
et al., 2023), a 125-million-parameter model. Al-
though we also experimented with XLM-RoBERTa
(Conneau et al., 2020) models of various sizes, they
consistently lagged behind mDeBERTa V3 in per-
formance. For MasakhaNER, we additionally com-
pared with afro-xlmr-large (Alabi et al., 2022), a
355-million-parameter.

Training Setup: All models were trained exclu-
sively with English-labeled data and subsequently
evaluated in the target languages. For the text-to-
text models, they were trained using the standard
Next Token Prediction (NTP) loss. During infer-
ence, we utilized 4 beams for both constrained and
unconstrained beam search. For the encoder-only
models, we added a token classification layer (lin-
ear layer) on top of each token representation and
trained them using the Cross-Entropy loss. In both
scenarios, we employed the Huggingface open-
source library (Apache-2.0 License) (Wolf et al.,
2019). A comprehensive breakdown of the hyper-
parameters is available in the appendix.

5 Experiments

5.1 Named Entity Recognition

Table 1 shows the performance of our method
in comparison to the baselines in the NER task.
All models exhibit comparable performance in En-
glish. However, when assessing zero-shot cross-
lingual transfer, significant differences in perfor-
mance emerge.

Firstly, pronounced variations in the results of
mTO-XL unconstrained and constrained decoding

mTO-x1 GLOT mDeBERTa afro
Lang Base Cons | 500 V3 XLMR
English 932 933 | 923 934 934
Bambara 52.8 53.8 51.1 338 40.0
Ghomila 433 437 45.7 433 44.0
Ewé 734 736 | 721 74.4 70.3
Fon 68.0 69.7 56.7 49.2 49.8
Hausa 70.0 719 67.2 70.7 74.1
Igbo 559 610 62.1 58.8 72.5
Kinyarwanda 719 743 66.1 65.7 67.9
Luganda 79.0 795 79.2 73.0 77.9
Mossi 554  55.7 514 44.6 45.7
Naija 73.5  80.1 71.1 78.7 80.4
Chichewa 76.5  76.7 76.6 73.7 79.6
chiShona 243 54.0 39.8 358 352
Kiswahili 85.7 88.0 84.0 86.7 88.2
Setswana 72.3 735 66.8 63.1 73.3
Akan/Twi 60.1  61.5 55.9 49.9 40.3
Wolof 564  56.8 61.6 42.0 51.3
isiXhosa 27.0 55.8 26.5 24.9 26.0
Yoruba 51.0 513 54.4 34.1 52.5
isiZulu 39.2  66.7 43.3 447 47.1
Average
MasakhaNER 59.8  65.7 59.6 55.1 58.7

Table 1: F1 scores in the Named Entity Recognition
Task

can be observed across languages. In some lan-
guages, such as Bambara, Ghomdld, or Ewé, both
methods yield similar results. In contrast, there
is a marked performance improvement in other
languages, including Shona, isiXhosa, and Zulu.
These languages, part of the Southern Bantu fam-
ily, possess unique linguistic features: they capital-
ize proper names following the noun class prefix
(i.e. kweZambia) and exhibit a highly inflected
morphology (Adelani et al., 2022). Such attributes
complicate the cross-lingual transfer abilities of En-
glish fine-tuned NER models. Thus, all the baseline
models, including the encoder-only variants, reg-
ister suboptimal results in these languages and are
clearly outperformed by our constrained decoding
approach.

As we demonstrate in Section 5.4, text-to-text
models face challenges with agglutinative lan-
guages, frequently mislabeling entities by arbitrar-
ily splitting them into sub-words. Our constrained
decoding corrects this by ensuring that the output
sentence retains the original words from the input
sentence. Broadly, constrained decoding performs
particularly well when applied in a zero-shot cross-



lingual setting to target languages with a highly
inflected agglutinative morphology. Although this
performance gap is less pronounced for language
isolates like Bambara, Ewé, Fon, and Twi, it re-
mains quite noteworthy.

While encoder-only models do register the best
results in a selected few languages, average results
across all languages show that mTO0-XL, when com-
bined with our constrained decoding algorithm, out-
performs alternative approaches by more than 5
points in F1 Score. In fact, within this dataset, our
technique not only proves competitive but also out-
performs, for some languages, data-transfer meth-
ods which generate data in the target language by
translation and annotation projection (Chen et al.,
2023; Garcia-Ferrero et al., 2023).

5.2 Opinion Target Extraction

mTO-x1 GLOT mDeBERTa

Lang Base Cons | 500 V3

English 826 848 | 826 83.6
Spanish  77.8  79.4 69.4 78.0
French 74.1  76.6 65.8 76.9
Dutch 741 771 66.5 77.3
Russian  71.1  75.7 69.2 76.5
Turkish ~ 56.8  57.7 50.4 56.4
Average  70.8 733 | 643 73.0

Table 2: F1 scores in the Opinion Target Extraction
Task.

In the NER task, we experimented cross-lingual
transfer approaches with a set of low-resource
African languages that significantly differ from En-
glish. For the Opinion Target Extraction task, we
evaluate cross-lingual transfer performance into
languages from the Indo-European language fam-
ily. As shown in Table 2, excluding Turkish (an
agglutinative language), the performance decline
in the target languages compared to English is less
pronounced, suggesting a more seamless transfer.
Even in this context, our constrained generation
algorithm significantly surpasses the unconstrained
generation. Finally, while mTO-XL and mDeBER-
TaV3 show comparable performance, our approach
shows a slightly higher average performance across
the board.

5.3 Event Extraction

For Event Extraction we aim to perform zero-shot
cross-lingual transfer from English into Chinese, a
task that is particularly challenging due to the vast

mTO-x1 GLOT mDeBERTa
Lang Base Cons | 500 V3
Englishgnity 95.5 955 94.5 953
Chinesegniy 70.1 733 34.1 54.2
Englishmger 789 789 | 74.1 78.0
Chineserrigger 49.6  52.1 0.0 30.5

Table 3: F1 scores in the Event Extraction Task.

linguistic and cultural differences between the two
languages, including script type, syntax, semantics,
and the use of tones in Chinese. As reported in
Table 3, both GLOT500 and mDEBERTa struggle
with the transfer from English to Chinese, whereas
mTO-XL achieves much better results. As shown
in previous evaluations, our constrained generation
approach improves over the unconstrained genera-
tion method by approximately 3 points in F1 score.

5.4 Ablation Study

In this section we aim to better understand why
and in which scenarios constrained decoding per-
forms better than unconstrained decoding. In order
to do so, we try to identity the types of mistakes
unconstrained decoding makes that are fixed by
constraining the decoding. They can be grouped
in 3 types of errors: Inconsistent HTML markups,
word hallucinations and word splittings.
Inconsistent HTML markups: The model gen-
erates HTML markup that cannot be parsed, for
example, when a label is opened an never closed.
We found out that this occurs in less than 1% of the
annotated sentences. Therefore, it has a negligible
effect in the performance of the model.
Word hallucinations: The model includes in the
output a word that was not present in the input.
This occurs because the unconstrained generation
often generates output that mixes English and the
target language. For instance, given the sentence
“Kaliforni sulld sén togse”, mT0-XL, when using
unconstrained decoding, produces “<Location>
California </Location> sulld sén togse”. In this
instance, the model has translated “Kaliforni” to
“California”. Furthermore, inadvertent translation is
not the only cause of hallucinations in the output.
Perhaps due to a limited understanding of the target
language, the model often introduces typos (e.g.,
“okudlula” incorrectly becomes “okudludlule”). In-
terestingly, it even mixes African languages. For
instance, given a Zulu sentence as input contain-
ing the word “Musawenkosi” (Good Bless you),
the model outputs the very similar Chichewa word
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Figure 6: Percentage of hallucinated words compared to the performance delta between unconstrained and uncon-

strained beam search in MasakhaNER using mTO-XL.

“Mumawenkosi” (You are welcome).

Word Splittings refer to instances where the model
either divides a word into multiple subwords or,
conversely, combines several words into a sin-
gle one. This occurs because the model has
been trained in English and, when tested on an
agglutinative languages, the model attempts to
mimic English morphology by arbitrarily splitting
words. For instance, the sequence “<Location>
waseThekwini </Location> <Person> uShauwn
Mkhize </Person>" becomes “wase <Location>
Thekze </Location> u <Person> Shauwn Mkhize
</Person>". This behavior is interesting, as lemma-
tization is a component of many downstream IE
applications. Thus, one could argue that this is the
desired behaviour. However, although accidental
lemmatization was performed correctly in this par-
ticular example, this is not usually the case. For
instance, in Basque (whose results are not reported
here for brevity, although the models were tested in
this language) as illustrated in Figure 2, the model
incorrectly splits the term "Realean” into “Reale”
and “an”. However, “Reale” does not represent
the correct lemma, which would correspond to ”Re-
ala”, the name of a football team. Therefore, the
models seems to be arbitrarily splitting words to
mimic English morphology.

We calculated the percentage of sentences con-
taining some of these errors for each language in
the NER task when using mTO-XL with uncon-
strained generation. The results are depicted in
Figure 6. Additionally, we compared the overall
percentage of sentences containing any error with

the performance difference between constrained
and unconstrained generation. The larger the delta,
the superior the constrained generation algorithm’s
performance. Figure 6 indicates that word splitting
and hallucinations correlate with the performance
delta, suggesting that addressing these issues is the
key to the superiority of the constrained generation
algorithm. It also underscores that unconstrained
generation produces a substantial proportion of sen-
tences with errors. In cases like chiShone and isiX-
hosa (discussed in Section 5.1), this could amount
to over 50% of the output sentences. It should be
noted that word splitting has a more pronounced
effect on the performance delta than hallucinations.
This can be attributed to the standard sequence
evaluation method used for these tasks. Thus, we
convert the model’s output into IOB2 encoding;
therefore, for the example “<Location> California
</Location> sulld sén togse”, we will derive the
IOB2 annotation "B-LOC O O O". This is accu-
rate even if the model were to translate the entity
into English. However, when the model splits or
merges words, the IOB2 labelling is disrupted, ren-
dering the sentence as incorrect in the evaluation.
Thus, although the evaluation method may gloss
over hallucination errors, it is important to note that
models generate a significant number of hallucina-
tions when producing unconstrained predictions,
potentially impacting the ultimate efficacy and ap-
plicability of IE systems.

We also evaluated the total number of mistakes
generated by unconstrained beam search in the
NER task with mTO models of varying sizes. As



—— %Total

+ %HTML_error

=+ %Hallucinations
%Splitted

30
251 °

15 : -

300M 580M 1.2B 3.78

Figure 7: Average percentage of mistakes generared
by Unconstrained Beam search in MasakhaNER using
mTO models of different sizes

—e— Base
Cons

60.01 _GLOT500

5
300M 580M 1.2B 3.78B

Figure 8: Average F1 score in MasakhaNER compared
to the mTO model size

illustrated in Figure 7, word splitting and inconsis-
tent HTML markups remain consistent across mod-
els with different parameter sizes. However, the
frequency of hallucinations decreases as the model
size increases. This might be because models with
more parameters have a more refined representa-
tion of individual languages, and therefore, they
mix languages less frequently.

Finally, we assess the average F1 score in the
NER task for mTO models ranging from 300 mil-
lion to 3.7 billion parameters. The results are pre-
sented in Figure 8. They show that as the mTO
model’s parameter count increases, the F1 score
improves, although we observe diminishing returns
beyond 1.2 billion parameters. While our exper-
iments utilize the 3.7 billion parameter mTO0-XL,
constrained generation surpasses both GLOT500 (a
125 million parameter model) and afro-xlmr-large
(355 million parameters) when using a mTO model
with only 580 million parameters. This indicates
that the superiority of our method over encoder-
only models isn’t solely due to leveraging a larger
model. Notably, with constrained generation, the
580 million parameter mTO model achieves per-
formance comparable to the 1.2 billion parameter

model when the latter employs unconstrained gen-
eration. Therefore, constrained generation is also
considerably more computationally efficient than
its unconstrained counterpart.

6 Conclusion

In this work, we introduce a Constrained Beam
Search Algorithm that can be seamlessly incorpo-
rated into any text-to-text LLMs. We demonstrate
that, compared to Unconstrained Beam Search, our
algorithm significantly improves zero-shot cross-
lingual performance across a broad range of IE
tasks and languages. Through an extensive abla-
tion study, we show that constrained generation
effectively mitigates issues such as word-splitting
and language mixing, which lead to typos and un-
intentional translations, errors commonly observed
when applying text-to-text models to these tasks.
Our approach allows the text-to-text mT0 language
model to outperform encoder-only models, which
had previously set the state-of-the-art standard for
zero-shot cross-lingual IE. Considering the prevail-
ing focus on text-to-text LLMs in current research,
and the infrequent training of new encoder-only
models, we believe that this represents significant
progress in research area. To the best of our knowl-
edge, we present the best zero-shot cross-lingual
results up to date.

We also want to highlight that, although mTO has
frequently been overshadowed by the community’s
preference for mT5 and other decoder-only mod-
els, we have found that it boasts remarkable cross-
lingual capabilities and that it should be considered
as a good option to perform zero-shot cross-lingual
experiments.

For future work we plan to experiment with Con-
strained Generation for both zero and few-shot IE.
We hypothesize that, with our algorithm, it might
be possible to prompt LLMs trained for instruction
tuning to annotate IE tasks in zero-shot settings.
This could further reduce the amount of manually
annotated data needed for IE. Finally, while our
current work emphasizes IE, our algorithm can
also enhance the performance of any NLP task that
involves structured output.

7 Limitations

The main limitation of our Constrained Generation
Algorithm is that it is dependent on the model’s
specific tokenizer. We have successfully tested the
algorithm with some of the most popular models,



such as T5, mT5, mTO, OpenLlama, LLaMA?2, and
StableLM. However, we encountered issues when
using it with BLOOM. The BLOOM tokenizer pro-
duces a different tokenization for the unlabeled
and labeled sentences, as adding the HTML-tags
changes the token ID of the surrounding tokens.
This can be overcome, although it would require
modifying the algorithm to specifically support the
BLOOM tokenizer. Therefore, while our algorithm
is compatible with most popular LLMs, in specific
cases, it may require further adaptation. This adap-
tation is specially difficult for tokenizers trained
without word splitting.
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A Hyperparameter Settings

Table 4 describe the hyper-parameter settings that
we use for each tasks and model type. For text-to-
text models we use Adafactor (Shazeer and Stern,
2018) optimizer as it provides similar results to
AdamW while requiring less GPU memory.

For encoder-based models, we report the aver-
age of 5 runs. For text-to-text models, we report a
single run. We conducted multi-run experiments
and found that the deviation was very small. Ad-
ditionally, the computational requirements to run
multiple runs were deemed too high.

We use seqgeval (Nakayama, 2018) to compute
the F1 score.

B Hardware used

We perform all our experiments using a single
NVIDIA A100 GPU with 80GB memory. The
machine used has two AMD EPYC 7513 32-Core
Processors and 1024GB of RAM.

C Extended text-to-text Results

Table 5 shows the performance comparison be-
tween mTS5 and mTO models of different sizes.
While mT5 and mTO perform similar in the Named
Entity Recognition Task, mTO is superior in the
Opinion Target Extraction and Event Extraction
Tasks.

D Beams vs F1 Score

In this section, we assess the performance of mTO-
XL when using a varying number of beams. We
evaluate the same checkpoint using beam search
ranging from 1 to 8 beams. For these exper-
iments, we utilize a subset of MasakhaNER?2,
which includes the following languages: Bambara,
Ghomaéld, Ewé, Fon, Hausa, Igbo, Kinyarwanda,
Luganda, and Mossi. As illustrated in Figure 9,
increasing the number of beams has a negligible
effect on performance. Considering that the com-
putational cost and GPU memory requirements in-
crease linearly with the number of beams, in this
scenario, using a single beam (greedy decoding) of-
fers the best performance-to-cost ratio. This occurs
because the model is highly confident about its top
prediction during each step of the decoding, and
introducing additional beams does not significantly
diversify or improve the generated outputs.
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Figure 9: Average F1 score of mTO0-XL in a subset of
MasakhaNER compared to the number of beams used
for decoding.



| Named Entity Recognition

Opinion Target Extraction

Event Extraction

| Encoders  Text-to-text | Encoders  Text-to-text | Encoders —Text-to-text
Training Examples 14986 2000 3337
Epochs 20 20 10 50 10 45
Learning Rate SE-05 1E-04 5E-05 1E-04 SE-05 1E-04
Wanup Steps 0 500 0 500 0 500
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
Batch Size 32 16 32 16 32 16
Optimizer AdamW Adafactor AdamW Adafactor AdamW Adafactor
Seq. Len 192 192 192 192 192 192
Beams - 4 - 4 - 4

Table 4: Hyper-parameter setting for training the different model types

mT5-large mT5-x1 mTO-large mTO-xI
Lang Base Cons Base Cons ‘ Base Cons Base Cons
Named Entity Recognition
English 88.7 928 934 937 | 93.7 938 932 933
Bambara 358 441 525 534 | 509 514 528 538
Ghomadla 329 3877 461 475 | 2877 40.8 433 437
Ewé 610 735 798 81.0 | 80.1 803 734 73.6
Fon 273 463 520 554 | 592 60.7 680 69.7
Hausa 557 678 713 738 | 719 731 700 719
Igbo 452 583 726 772 | 690 73.6 559 610
Kinyarwanda 458 620 719 731 | 746 75.6 719 743
Luganda 669 741 819 823 | 834 836 790 795
Mossi 352 41.1 525 537 | 504 50.8 554 55.7
Naija 577 784 763 835 | 797 861 735  80.1
Chichewa 71.8 781 7777 788 | 765 712 765 767
chiShona 29.6 409 352 482 | 224 497 243 540
Kiswahili 63.7 783 864 89.6 | 86.6 88.8 857 88.0
Setswana 566 704 81.0 813 | 70.8 741 723 735
Akan/Twi 439 554 602 614 | 592 594 60.1 615
Wolof 41.8 489 533 543 | 572 584 564 568
isiXhosa 233 333 305 403 | 286 463 270 558
Yoruba 31,0 426 551 585 | 523 525 510 513
isiZulu 334 431 494 549 | 438 61.0 392 66.7
Average 452 566 624 657 | 603 654 59.8 657
Opinion Target Extraction
English 604 796 757 852 | 82.1 86.6 826 84.8
Spanish 337 275 540 575 | 61.0 620 77.8 794
French 233 208 505 53,6 | 565 584 741 76.6
Dutch 42.1 427 635 674 | 73.0 751 741 771
Russian 153 234 552 625 | 66.1 688 71.1  75.7
Turkish 220 319 336 447 | 568 556 568 577
Average 273 292 513 572 | 627 640 708 733
Event Extraction
Englishrrigger 672 745 766 781 | 715 715 789 789
Chineseryigger 0.0 0.0 333 341 | 547 547 496 521
All Tasks Average 24.1 286 49.0 523 | 592 614 600 63.7

Table 5: F1 scores for different text-to-text models
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