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Abstract

The shortage of manually annotated data for In-001
formation Extraction tasks in many languages002
has been somewhat mitigated by the develop-003
ment of multilingual language models. Thus, a004
model fine-tuned in a high-resource language,005
typically English, can be employed to generate006
predictions in other (usually low-resource) lan-007
guages. Previous research shows that in this008
setting, commonly known as zero-shot cross-009
lingual transfer, encoder-only models still out-010
perform text-to-text Large Language Models011
(LLMs) trained with vast amounts of data and012
computational resources. In this work we ar-013
gue that this is mostly caused by text-to-text014
models mixing languages in their outputs when015
applied to cross-lingual settings. This paper in-016
troduces a Constrained Decoding Beam Search017
algorithm that effectively addresses this issue.018
A comprehensive empirical evaluation across019
multiple tasks and languages demonstrate that,020
when our method is applied to a LLM such as021
mT0-XL, it helps not only to improve over the022
unconstrained beam search baseline, but also023
to outperform the zero-shot cross-lingual capa-024
bilities of encoder-only models, especially for025
languages that significantly differ from English.026
We will make our code publicly available upon027
publication.028

1 Introduction029

Current methods for Information Extraction (IE)030

heavily rely on the availability of annotated train-031

ing data (Min et al., 2023). However, supervised032

models suffer from a significant decline in perfor-033

mance when tested in out-of-domain settings (Liu034

et al., 2021) and across different languages (Rahimi035

et al., 2019). This suggests that achieving optimal036

results would require manually creating annotated037

data for every domain and language - a practice038

that is often unfeasible in terms of cost and hu-039

man labor, as demonstrated by the lack of manu-040

ally annotated data for many languages (Joshi et al.,041
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Figure 1: Average cross-lingual zero-shot F1 scores.
Models are trained only in English and evaluated on a
large set of diverse languages.

2020). Therefore, developing models for languages 042

and domain-specific tasks without readily available 043

training data remains an important challenge. 044

The shortage of manually annotated data for 045

many languages has been somewhat mitigated by 046

the appearance of multilingual language models 047

(Devlin et al., 2019; Conneau et al., 2020). These 048

models allow to perform zero-shot cross-lingual 049

transfer. Thus, a model fine-tuned in a high- 050

resource language, typically English, can be em- 051

ployed to label data in other (usually low-resource) 052

languages. Recently published text-to-text LLMs 053

(Xue et al., 2021; Touvron et al., 2023) have been 054

trained with more data and computational resources 055

than any modern encoder-only model and they are 056

achieving significant success in mono-lingual IE 057

evaluations (Sainz et al., 2023). However, recent 058

shared tasks centered on multilingual information 059

extraction (Fetahu et al., 2023) show that encoder- 060

only models like XLM-RoBERTa (Conneau et al., 061

2020) and mDeBERTa (He et al., 2023) continue 062

to be the best performing option. 063

Text-to-text approaches to zero-shot cross- 064

lingual IE face multiple challenges: In this setting 065
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Turkiako selekzioan eta Realean jokatu zuen. Text2Text
Model

<Organization> Turkiako selekzioan </Organization>
eta <Organization> Realean </Organization> jokatu zuen.

<Organization> Turkish selekzioan eta <Organization>
Reale</Organization> an jokatu zuen.

Constrained Decoding

Unconstrained Decoding

Figure 2: Comparison between a valid (top green) and invalid (bottom red) output structure to represent a Named
Entity Recognition task. English translation: (They) played in Real and in the Turkish national team.

we must first establish a text-based input and out-066

put representation for the specific task. However,067

models sometimes fail in strictly adhering to the068

output structure. Moreover, as demonstrated by069

our experiments, text-to-text models often produce070

outputs mixing the training language and the target071

language, which compromises their performance.072

These issues are illustrated by Figure 2, where073

the incorrect output mixes English and Basque074

(Turkiako-Turkish) and incorrectly breaks the orga-075

nization entity ‘Realean’.076

In this paper we introduce a Constrained De-077

coding Algorithm that addresses these issues.078

The model’s decoding is constrained to ensure a079

valid HTML-style annotation structure while craft-080

ing an output sentence that mirrors the words of081

the unlabeled input. This technique can be seam-082

lessly integrated with any text-to-text model with-083

out any significant increase in the decoding cost.084

Although constrained generation has been previ-085

ously explored in a monolingual setting (Guo and086

Roth, 2021), we adapt and extend this approach087

for zero-shot cross-lingual IE. Our new decoding088

algorithm is evaluated on three popular IE tasks for089

25 languages of varied morphological characteris-090

tics. Empirical results reported by Figure 1 indicate091

that our method, when applied to a LLM such as092

mT0-XL (Muennighoff et al., 2023), not only sur-093

passes the unconstrained beam search baseline but094

also outperforms the zero-shot cross-lingual per-095

formance of encoder-only models. Our method096

is especially successful for languages that signifi-097

cantly differ from English.098

To the best of our knowledge, our new technique099

achieves the best zero-shot model-based cross-100

lingual transfer results to date.101

2 Related Work102

The formulation of information extraction tasks in103

a constrained text-to-text format has been previ-104

ously explored (Vinyals et al., 2015; Xiao et al.,105

2016; Dyer et al., 2016). However, it was with106

the emergence of large-scale text-to-text language 107

models, capable of addressing a diverse array of 108

Natural Language Processing (NLP) challenges 109

when framed as text-to-text problems (Raffel et al., 110

2019), that this approach garnered significant atten- 111

tion within the community. Lester et al. (2020) pro- 112

pose a Named Entity Recognition system that uses 113

Viterbi decoding (Forney, 1973) with heuristically 114

determined transition probabilities that prohibit ille- 115

gal transitions. This achieves similar performance 116

to conditional random field (CRF) models (Laf- 117

ferty et al., 2001), but it is more computationally 118

efficient. Cao et al. (2021) and De Cao et al. (2022) 119

propose a sequence-to-sequence system for Mul- 120

tilingual Entity Linking, which can generate en- 121

tity names from left to right, token by token, in 122

an autoregressive manner, conditioned by the con- 123

text. To ensure that only valid entity identifiers 124

are generated, they employ a prefix tree to enable 125

constrained beam search. 126

Closer to our work, which focuses on constrain- 127

ing LLMs to adhere to a pre-defined output struc- 128

ture, Lu et al. (2021) present a constrained de- 129

coding algorithm that forces the model to adhere 130

to a pre-defined output structure during inference. 131

Similarly, Zheng et al. (2023) and He and Choi 132

(2023) both propose constrained decoding algo- 133

rithms that improve semantic parsing. Instead of 134

constraining the generation of output text, Cui et al. 135

(2021) perform Named Entity Recognition (NER) 136

by computing the probability of a text span fill- 137

ing predefined structures. Instead of flattening the 138

structured output into a sequence, Liu et al. (2022) 139

model the output as sequences of actions. These 140

actions are predicted in an autoregressive manner 141

with LLMs and executing the actions ought to gen- 142

erate the structured output. Their approach im- 143

proves upon previous methods in Named Entity 144

Recognition, end-to-end relation extraction, and 145

co-reference resolution. With the aim of projecting 146

labels across languages in sequence labelling tasks, 147

García-Ferrero et al. (2023) employs unconstrained 148

generation to produce a large number of candi- 149
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dates, subsequently discarding the invalid ones.150

Compared to constrained generation this method151

demands significant computational resources and152

does not guarantee the generation of a valid output.153

Although previous research has demonstrated154

the effectiveness of constrained decoding for in-155

formation extraction, most of it has focused on156

monolingual settings. Thus, Guo and Roth (2021)157

propose an algorithm that employs constrained de-158

coding of text-to-text LLMs for zero-shot NER159

in low-resource languages. First, they translate160

labeled data in a word-by-word manner using a161

dictionary. Then, they construct target language162

text from the source-language named entities using163

a pretrained language model. They utilize con-164

strained decoding to ensure the presence of entities165

in the generated text. This data-transfer method166

was later surpassed by model-based cross-lingual167

transfer method (García-Ferrero et al., 2022) which168

uses encoder-only models trained with English la-169

belled data to directly label sentences in a different170

target language.171

3 Approach172

In this section we describe our representation of173

an Information Extraction task such as Sequence174

Labelling by applying our new Constrained text-175

to-text approach. Our algorithm can be used for176

both encoder-decoder (Vaswani et al., 2017) and177

decoder-only (Liu et al., 2018) architectures, as178

well as any other auto-regressive architecture.179

3.1 Input-Output Representation180

Obama went to New York .

Text2Text
Model

<Person> Obama </Person> went to
<Location> New York </Location> .

Figure 3: Text-to-Text representation of the Sequence
Labeling task. Given an input sentence, the model must
generate the same sentence annotated with html-style
tags.

The model is prompted with a sentence to label.181

The expected output is the same sentence anno-182

tated with HTML-style tags. An example is pro- 183

vided in Figure 3. The HTML tags for each task 184

are added as special tokens to the model’s vocabu- 185

lary. Previous research (Raman et al., 2022) found 186

that different structures do not greatly impact the 187

performance of the model so we use HTML-style 188

tags because the format is easy for humans to read. 189

Furthermore, LLMs, which have been trained on 190

vast amounts of data from the Internet, are already 191

familiar with this format, and implementing a con- 192

strained grammar for this structure is quite straight- 193

forward. In any case, our method can be adapted to 194

any other task representation. For encoder-decoder 195

models, the unlabeled sentence is given as input 196

into the encoder block, while the decoder block 197

generates the labeled output. For encoder-only 198

models, we use the token ‘->’ during training as a 199

separator between the unlabeled and labeled sen- 200

tence. We also experimented with generating only 201

the labeled spans as output (i.e., <Person> Obama 202

</Person> <Location> New York </Location>), 203

but we obtained worse results. 204

3.2 Constrained decoding 205

The constrained decoding algorithm aims to ensure 206

that the output sequence contains the same words 207

as the input sequence. This prevents hallucina- 208

tions, which are very common when a model is 209

trained in one language and then used to label sen- 210

tences in another language. It also ensures that the 211

output sequence is a valid HTML annotation, with 212

no unclosed tags, empty tags, or other errors. This 213

prevents the generation of unparseable outputs. 214

We implement our constrained decoding algorithm 215

using the Finite State Automaton described in Fig- 216

ure 4. At each state, the model can generate only a 217

set of valid tokens. This set includes copying the 218

next word from the input (if the word is split by 219

the tokenizer into multiple tokens, all of them are 220

copied to prevent splitting of words). It can also 221

open an HTML tag, but only if no tag remains open, 222

or close it, but only if we have already opened a tag 223

and copied a word. The generation process ends 224

when all the words in the input have been copied 225

into the output and no label remains open. 226

Given a sequence (x1, x2, . . . , xt−1) that has
been generated thus far and a set St of valid next
tokens at step t, the next token xt is selected as:

xt = argmax
x∈St

P (x|x1, x2, ..., xt−1)

Where P (x|x1, x2, . . . , xt−1) represents the condi-
tional probability of token x given the prior tokens.
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Figure 4: Our Constrained Decoding Algorithm defined as a Finite State Automaton.

Any token not in St is given a probability of zero,
ensuring that the generated sequence adheres to the
constraints. The probability for each token xi ∈ St

is computed using the softmax function applied to
the model predictions:

P (xi|x1, x2, ..., xt−1) =
exp(xi)∑
j exp(xj)

The probability of the generated sequence up to227

step T is computed as:228

P (x1:T |<bos>) =
T∑
t=1

log xt

While most previous constrained decoding algo-229

rithms are limited to greedy decoding, we imple-230

ment a constrained beam search approach. We231

keep track of the top k most probable sentences at232

each step t, ensuring a broader exploration of the233

solution space and yielding higher-quality output234

sequences that adhere to the given constraints. Our235

constrained beam search approach adds very little236

overhead compared to the standard beam search de-237

coding strategy. At each step, our only additional238

task is to compute the set of valid next tokens and239

states. It’s important to note that our constrained240

beam search decoding algorithm merely eliminates241

invalid sequences from the search space. Conse-242

quently, the constrained beam search will always243

yield an output that is at least as good as, if not244

superior to, unconstrained beam search.245

4 Experimental Setup246

The datasets used address to three information ex-247

traction tasks which are illustrated by Figure 5.248

Named Entity Recognition (NER): This task con- 249

sists of detecting named entities and classifying 250

them according to some pre-defined categories. We 251

evaluate the models on MasakhaNER 2.0 (Adelani 252

et al., 2022), a manually annotated NER dataset for 253

20 African languages.We train the models with the 254

CoNLL03 (Tjong Kim Sang, 2002) English train- 255

ing split. We focus on named entities referring to 256

Person, Location and Organization. 257

Opinion Target Extraction (OTE): Given a re- 258

view, the task is to detect the linguistic expression 259

used to refer to the reviewed entity. We use the 260

English SemEval 2016 Aspect Based Sentiment 261

Analysis (ABSA) datasets (Pontiki et al., 2014). 262

The English training split is used for fine-tuning; 263

results are reported on the Spanish, French, Dutch, 264

Russian and Turkish test sets. 265

Event Extraction (EE): It consists of detecting 266

and classifying event mentions according to some 267

pre-defined class-inventory. We use the English 268

ACE05 (Walker et al., 2006) training split for train- 269

ing and the Chinese test split for evaluation. We 270

also perform the Entity Mention Extraction task 271

separately as additional indicator of performance. 272

4.1 Language Models and baselines 273

Text-to-text Models: We use mT0-XL (Muen- 274

nighoff et al., 2023) 3.7 Billion parameter model in 275

all our experiments. mT0-XL is an mT5 (Xue et al., 276

2021) pretrained multilingual language model fine- 277

tuned in the cross-lingual task mixture xP3. We 278

also experimented with mT5 itself, BLOOM (Scao 279

et al., 2022), BLOOMZ (Muennighoff et al., 2023) 280

and StableLM (Tow et al., 2023) but we found out 281
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Figure 5: Information Extraction Tasks in our experiments

that mT0 displayed superior zero-shot cross-lingual282

capabilities.283

Baselines: We assess the performance of our con-284

strained beam search algorithm (Cons) against285

the unconstrained decoding baseline (Base). Af-286

ter fine-tuning, we test the same checkpoint us-287

ing both constrained and unconstrained decoding.288

Additionally, our method is compared to popu-289

lar encoder-only models, which currently set the290

benchmark for zero-shot cross-lingual transfer and291

have been widely adopted by the community. Thus,292

we evaluate mDeBERTa V3 (He et al., 2023), an293

86-million-parameter model, and GLOT500 (Imani294

et al., 2023), a 125-million-parameter model. Al-295

though we also experimented with XLM-RoBERTa296

(Conneau et al., 2020) models of various sizes, they297

consistently lagged behind mDeBERTa V3 in per-298

formance. For MasakhaNER, we additionally com-299

pared with afro-xlmr-large (Alabi et al., 2022), a300

355-million-parameter.301

Training Setup: All models were trained exclu-302

sively with English-labeled data and subsequently303

evaluated in the target languages. For the text-to-304

text models, they were trained using the standard305

Next Token Prediction (NTP) loss. During infer-306

ence, we utilized 4 beams for both constrained and307

unconstrained beam search. For the encoder-only308

models, we added a token classification layer (lin-309

ear layer) on top of each token representation and310

trained them using the Cross-Entropy loss. In both311

scenarios, we employed the Huggingface open-312

source library (Apache-2.0 License) (Wolf et al.,313

2019). A comprehensive breakdown of the hyper-314

parameters is available in the appendix.315

5 Experiments316

5.1 Named Entity Recognition317

Table 1 shows the performance of our method318

in comparison to the baselines in the NER task.319

All models exhibit comparable performance in En-320

glish. However, when assessing zero-shot cross-321

lingual transfer, significant differences in perfor-322

mance emerge.323

Firstly, pronounced variations in the results of324

mT0-XL unconstrained and constrained decoding325

mT0-xl
Lang Base Cons

GLOT
500

mDeBERTa
V3

afro
XLMR

English 93.2 93.3 92.3 93.4 93.4

Bambara 52.8 53.8 51.1 33.8 40.0
Ghomálá 43.3 43.7 45.7 43.3 44.0
Éwé 73.4 73.6 72.1 74.4 70.3
Fon 68.0 69.7 56.7 49.2 49.8
Hausa 70.0 71.9 67.2 70.7 74.1
Igbo 55.9 61.0 62.1 58.8 72.5
Kinyarwanda 71.9 74.3 66.1 65.7 67.9
Luganda 79.0 79.5 79.2 73.0 77.9
Mossi 55.4 55.7 51.4 44.6 45.7
Naija 73.5 80.1 71.1 78.7 80.4
Chichewa 76.5 76.7 76.6 73.7 79.6
chiShona 24.3 54.0 39.8 35.8 35.2
Kiswahili 85.7 88.0 84.0 86.7 88.2
Setswana 72.3 73.5 66.8 63.1 73.3
Akan/Twi 60.1 61.5 55.9 49.9 40.3
Wolof 56.4 56.8 61.6 42.0 51.3
isiXhosa 27.0 55.8 26.5 24.9 26.0
Yorùbá 51.0 51.3 54.4 34.1 52.5
isiZulu 39.2 66.7 43.3 44.7 47.1

Average
MasakhaNER 59.8 65.7 59.6 55.1 58.7

Table 1: F1 scores in the Named Entity Recognition
Task

can be observed across languages. In some lan- 326

guages, such as Bambara, Ghomálá, or Éwé, both 327

methods yield similar results. In contrast, there 328

is a marked performance improvement in other 329

languages, including Shona, isiXhosa, and Zulu. 330

These languages, part of the Southern Bantu fam- 331

ily, possess unique linguistic features: they capital- 332

ize proper names following the noun class prefix 333

(i.e. kweZambia) and exhibit a highly inflected 334

morphology (Adelani et al., 2022). Such attributes 335

complicate the cross-lingual transfer abilities of En- 336

glish fine-tuned NER models. Thus, all the baseline 337

models, including the encoder-only variants, reg- 338

ister suboptimal results in these languages and are 339

clearly outperformed by our constrained decoding 340

approach. 341

As we demonstrate in Section 5.4, text-to-text 342

models face challenges with agglutinative lan- 343

guages, frequently mislabeling entities by arbitrar- 344

ily splitting them into sub-words. Our constrained 345

decoding corrects this by ensuring that the output 346

sentence retains the original words from the input 347

sentence. Broadly, constrained decoding performs 348

particularly well when applied in a zero-shot cross- 349

5



lingual setting to target languages with a highly350

inflected agglutinative morphology. Although this351

performance gap is less pronounced for language352

isolates like Bambara, Éwé, Fon, and Twi, it re-353

mains quite noteworthy.354

While encoder-only models do register the best355

results in a selected few languages, average results356

across all languages show that mT0-XL, when com-357

bined with our constrained decoding algorithm, out-358

performs alternative approaches by more than 5359

points in F1 Score. In fact, within this dataset, our360

technique not only proves competitive but also out-361

performs, for some languages, data-transfer meth-362

ods which generate data in the target language by363

translation and annotation projection (Chen et al.,364

2023; García-Ferrero et al., 2023).365

5.2 Opinion Target Extraction366

mT0-xl
Lang Base Cons

GLOT
500

mDeBERTa
V3

English 82.6 84.8 82.6 83.6

Spanish 77.8 79.4 69.4 78.0
French 74.1 76.6 65.8 76.9
Dutch 74.1 77.1 66.5 77.3
Russian 71.1 75.7 69.2 76.5
Turkish 56.8 57.7 50.4 56.4

Average 70.8 73.3 64.3 73.0

Table 2: F1 scores in the Opinion Target Extraction
Task.

In the NER task, we experimented cross-lingual367

transfer approaches with a set of low-resource368

African languages that significantly differ from En-369

glish. For the Opinion Target Extraction task, we370

evaluate cross-lingual transfer performance into371

languages from the Indo-European language fam-372

ily. As shown in Table 2, excluding Turkish (an373

agglutinative language), the performance decline374

in the target languages compared to English is less375

pronounced, suggesting a more seamless transfer.376

Even in this context, our constrained generation377

algorithm significantly surpasses the unconstrained378

generation. Finally, while mT0-XL and mDeBER-379

TaV3 show comparable performance, our approach380

shows a slightly higher average performance across381

the board.382

5.3 Event Extraction383

For Event Extraction we aim to perform zero-shot384

cross-lingual transfer from English into Chinese, a385

task that is particularly challenging due to the vast386

mT0-xl
Lang Base Cons

GLOT
500

mDeBERTa
V3

EnglishEntity 95.5 95.5 94.5 95.3
ChineseEntity 70.1 73.3 34.1 54.2

EnglishTrigger 78.9 78.9 74.1 78.0
ChineseTrigger 49.6 52.1 0.0 30.5

Table 3: F1 scores in the Event Extraction Task.

linguistic and cultural differences between the two 387

languages, including script type, syntax, semantics, 388

and the use of tones in Chinese. As reported in 389

Table 3, both GLOT500 and mDEBERTa struggle 390

with the transfer from English to Chinese, whereas 391

mT0-XL achieves much better results. As shown 392

in previous evaluations, our constrained generation 393

approach improves over the unconstrained genera- 394

tion method by approximately 3 points in F1 score. 395

5.4 Ablation Study 396

In this section we aim to better understand why 397

and in which scenarios constrained decoding per- 398

forms better than unconstrained decoding. In order 399

to do so, we try to identity the types of mistakes 400

unconstrained decoding makes that are fixed by 401

constraining the decoding. They can be grouped 402

in 3 types of errors: Inconsistent HTML markups, 403

word hallucinations and word splittings. 404

Inconsistent HTML markups: The model gen- 405

erates HTML markup that cannot be parsed, for 406

example, when a label is opened an never closed. 407

We found out that this occurs in less than 1% of the 408

annotated sentences. Therefore, it has a negligible 409

effect in the performance of the model. 410

Word hallucinations: The model includes in the 411

output a word that was not present in the input. 412

This occurs because the unconstrained generation 413

often generates output that mixes English and the 414

target language. For instance, given the sentence 415

“Kaliforni sullã sẽn togse”, mT0-XL, when using 416

unconstrained decoding, produces “<Location> 417

California </Location> sullã sẽn togse”. In this 418

instance, the model has translated “Kaliforni” to 419

“California”. Furthermore, inadvertent translation is 420

not the only cause of hallucinations in the output. 421

Perhaps due to a limited understanding of the target 422

language, the model often introduces typos (e.g., 423

“okudlula” incorrectly becomes “okudludlule”). In- 424

terestingly, it even mixes African languages. For 425

instance, given a Zulu sentence as input contain- 426

ing the word “Musawenkosi” (Good Bless you), 427

the model outputs the very similar Chichewa word 428
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Figure 6: Percentage of hallucinated words compared to the performance delta between unconstrained and uncon-
strained beam search in MasakhaNER using mT0-XL.

“Mumawenkosi” (You are welcome).429

Word Splittings refer to instances where the model430

either divides a word into multiple subwords or,431

conversely, combines several words into a sin-432

gle one. This occurs because the model has433

been trained in English and, when tested on an434

agglutinative languages, the model attempts to435

mimic English morphology by arbitrarily splitting436

words. For instance, the sequence “<Location>437

waseThekwini </Location> <Person> uShauwn438

Mkhize </Person>” becomes “wase <Location>439

Thekze </Location> u <Person> Shauwn Mkhize440

</Person>”. This behavior is interesting, as lemma-441

tization is a component of many downstream IE442

applications. Thus, one could argue that this is the443

desired behaviour. However, although accidental444

lemmatization was performed correctly in this par-445

ticular example, this is not usually the case. For446

instance, in Basque (whose results are not reported447

here for brevity, although the models were tested in448

this language) as illustrated in Figure 2, the model449

incorrectly splits the term "Realean" into “Reale”450

and “an”. However, “Reale” does not represent451

the correct lemma, which would correspond to ”Re-452

ala”, the name of a football team. Therefore, the453

models seems to be arbitrarily splitting words to454

mimic English morphology.455

We calculated the percentage of sentences con-456

taining some of these errors for each language in457

the NER task when using mT0-XL with uncon-458

strained generation. The results are depicted in459

Figure 6. Additionally, we compared the overall460

percentage of sentences containing any error with461

the performance difference between constrained 462

and unconstrained generation. The larger the delta, 463

the superior the constrained generation algorithm’s 464

performance. Figure 6 indicates that word splitting 465

and hallucinations correlate with the performance 466

delta, suggesting that addressing these issues is the 467

key to the superiority of the constrained generation 468

algorithm. It also underscores that unconstrained 469

generation produces a substantial proportion of sen- 470

tences with errors. In cases like chiShone and isiX- 471

hosa (discussed in Section 5.1), this could amount 472

to over 50% of the output sentences. It should be 473

noted that word splitting has a more pronounced 474

effect on the performance delta than hallucinations. 475

This can be attributed to the standard sequence 476

evaluation method used for these tasks. Thus, we 477

convert the model’s output into IOB2 encoding; 478

therefore, for the example “<Location> California 479

</Location> sullã sẽn togse”, we will derive the 480

IOB2 annotation "B-LOC O O O". This is accu- 481

rate even if the model were to translate the entity 482

into English. However, when the model splits or 483

merges words, the IOB2 labelling is disrupted, ren- 484

dering the sentence as incorrect in the evaluation. 485

Thus, although the evaluation method may gloss 486

over hallucination errors, it is important to note that 487

models generate a significant number of hallucina- 488

tions when producing unconstrained predictions, 489

potentially impacting the ultimate efficacy and ap- 490

plicability of IE systems. 491

We also evaluated the total number of mistakes 492

generated by unconstrained beam search in the 493

NER task with mT0 models of varying sizes. As 494
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illustrated in Figure 7, word splitting and inconsis-495

tent HTML markups remain consistent across mod-496

els with different parameter sizes. However, the497

frequency of hallucinations decreases as the model498

size increases. This might be because models with499

more parameters have a more refined representa-500

tion of individual languages, and therefore, they501

mix languages less frequently.502

Finally, we assess the average F1 score in the503

NER task for mT0 models ranging from 300 mil-504

lion to 3.7 billion parameters. The results are pre-505

sented in Figure 8. They show that as the mT0506

model’s parameter count increases, the F1 score507

improves, although we observe diminishing returns508

beyond 1.2 billion parameters. While our exper-509

iments utilize the 3.7 billion parameter mT0-XL,510

constrained generation surpasses both GLOT500 (a511

125 million parameter model) and afro-xlmr-large512

(355 million parameters) when using a mT0 model513

with only 580 million parameters. This indicates514

that the superiority of our method over encoder-515

only models isn’t solely due to leveraging a larger516

model. Notably, with constrained generation, the517

580 million parameter mT0 model achieves per-518

formance comparable to the 1.2 billion parameter519

model when the latter employs unconstrained gen- 520

eration. Therefore, constrained generation is also 521

considerably more computationally efficient than 522

its unconstrained counterpart. 523

6 Conclusion 524

In this work, we introduce a Constrained Beam 525

Search Algorithm that can be seamlessly incorpo- 526

rated into any text-to-text LLMs. We demonstrate 527

that, compared to Unconstrained Beam Search, our 528

algorithm significantly improves zero-shot cross- 529

lingual performance across a broad range of IE 530

tasks and languages. Through an extensive abla- 531

tion study, we show that constrained generation 532

effectively mitigates issues such as word-splitting 533

and language mixing, which lead to typos and un- 534

intentional translations, errors commonly observed 535

when applying text-to-text models to these tasks. 536

Our approach allows the text-to-text mT0 language 537

model to outperform encoder-only models, which 538

had previously set the state-of-the-art standard for 539

zero-shot cross-lingual IE. Considering the prevail- 540

ing focus on text-to-text LLMs in current research, 541

and the infrequent training of new encoder-only 542

models, we believe that this represents significant 543

progress in research area. To the best of our knowl- 544

edge, we present the best zero-shot cross-lingual 545

results up to date. 546

We also want to highlight that, although mT0 has 547

frequently been overshadowed by the community’s 548

preference for mT5 and other decoder-only mod- 549

els, we have found that it boasts remarkable cross- 550

lingual capabilities and that it should be considered 551

as a good option to perform zero-shot cross-lingual 552

experiments. 553

For future work we plan to experiment with Con- 554

strained Generation for both zero and few-shot IE. 555

We hypothesize that, with our algorithm, it might 556

be possible to prompt LLMs trained for instruction 557

tuning to annotate IE tasks in zero-shot settings. 558

This could further reduce the amount of manually 559

annotated data needed for IE. Finally, while our 560

current work emphasizes IE, our algorithm can 561

also enhance the performance of any NLP task that 562

involves structured output. 563

7 Limitations 564

The main limitation of our Constrained Generation 565

Algorithm is that it is dependent on the model’s 566

specific tokenizer. We have successfully tested the 567

algorithm with some of the most popular models, 568

8



such as T5, mT5, mT0, OpenLlama, LLaMA2, and569

StableLM. However, we encountered issues when570

using it with BLOOM. The BLOOM tokenizer pro-571

duces a different tokenization for the unlabeled572

and labeled sentences, as adding the HTML-tags573

changes the token ID of the surrounding tokens.574

This can be overcome, although it would require575

modifying the algorithm to specifically support the576

BLOOM tokenizer. Therefore, while our algorithm577

is compatible with most popular LLMs, in specific578

cases, it may require further adaptation. This adap-579

tation is specially difficult for tokenizers trained580

without word splitting.581
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A Hyperparameter Settings922

Table 4 describe the hyper-parameter settings that923

we use for each tasks and model type. For text-to-924

text models we use Adafactor (Shazeer and Stern,925

2018) optimizer as it provides similar results to926

AdamW while requiring less GPU memory.927

For encoder-based models, we report the aver-928

age of 5 runs. For text-to-text models, we report a929

single run. We conducted multi-run experiments930

and found that the deviation was very small. Ad-931

ditionally, the computational requirements to run932

multiple runs were deemed too high.933

We use seqeval (Nakayama, 2018) to compute934

the F1 score.935

B Hardware used936

We perform all our experiments using a single937

NVIDIA A100 GPU with 80GB memory. The938

machine used has two AMD EPYC 7513 32-Core939

Processors and 1024GB of RAM.940

C Extended text-to-text Results941

Table 5 shows the performance comparison be-942

tween mT5 and mT0 models of different sizes.943

While mT5 and mT0 perform similar in the Named944

Entity Recognition Task, mT0 is superior in the945

Opinion Target Extraction and Event Extraction946

Tasks.947

D Beams vs F1 Score948

In this section, we assess the performance of mT0-949

XL when using a varying number of beams. We950

evaluate the same checkpoint using beam search951

ranging from 1 to 8 beams. For these exper-952

iments, we utilize a subset of MasakhaNER2,953

which includes the following languages: Bambara,954

Ghomálá, Éwé, Fon, Hausa, Igbo, Kinyarwanda,955

Luganda, and Mossi. As illustrated in Figure 9,956

increasing the number of beams has a negligible957

effect on performance. Considering that the com-958

putational cost and GPU memory requirements in-959

crease linearly with the number of beams, in this960

scenario, using a single beam (greedy decoding) of-961

fers the best performance-to-cost ratio. This occurs962

because the model is highly confident about its top963

prediction during each step of the decoding, and964

introducing additional beams does not significantly965

diversify or improve the generated outputs.966

1 2 3 4 5 6 7 860

62

64

66

68

70
Base
Cons

Figure 9: Average F1 score of mT0-XL in a subset of
MasakhaNER compared to the number of beams used
for decoding.
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Named Entity Recognition Opinion Target Extraction Event Extraction

Encoders Text-to-text Encoders Text-to-text Encoders Text-to-text

Training Examples 14986 2000 3337
Epochs 20 20 10 50 10 45
Learning Rate 5E-05 1E-04 5E-05 1E-04 5E-05 1E-04
Wanup Steps 0 500 0 500 0 500
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
Batch Size 32 16 32 16 32 16
Optimizer AdamW Adafactor AdamW Adafactor AdamW Adafactor
Seq. Len 192 192 192 192 192 192
Beams - 4 - 4 - 4

Table 4: Hyper-parameter setting for training the different model types

mT5-large mT5-xl mT0-large mT0-xl
Lang Base Cons Base Cons Base Cons Base Cons

Named Entity Recognition

English 88.7 92.8 93.4 93.7 93.7 93.8 93.2 93.3
Bambara 35.8 44.1 52.5 53.4 50.9 51.4 52.8 53.8
Ghomálá 32.9 38.7 46.1 47.5 28.7 40.8 43.3 43.7
Éwé 61.0 73.5 79.8 81.0 80.1 80.3 73.4 73.6
Fon 27.3 46.3 52.0 55.4 59.2 60.7 68.0 69.7
Hausa 55.7 67.8 71.3 73.8 71.9 73.1 70.0 71.9
Igbo 45.2 58.3 72.6 77.2 69.0 73.6 55.9 61.0
Kinyarwanda 45.8 62.0 71.9 73.1 74.6 75.6 71.9 74.3
Luganda 66.9 74.1 81.9 82.3 83.4 83.6 79.0 79.5
Mossi 35.2 41.1 52.5 53.7 50.4 50.8 55.4 55.7
Naija 57.7 78.4 76.3 83.5 79.7 86.1 73.5 80.1
Chichewa 71.8 78.1 77.7 78.8 76.5 77.2 76.5 76.7
chiShona 29.6 40.9 35.2 48.2 22.4 49.7 24.3 54.0
Kiswahili 63.7 78.3 86.4 89.6 86.6 88.8 85.7 88.0
Setswana 56.6 70.4 81.0 81.3 70.8 74.1 72.3 73.5
Akan/Twi 43.9 55.4 60.2 61.4 59.2 59.4 60.1 61.5
Wolof 41.8 48.9 53.3 54.3 57.2 58.4 56.4 56.8
isiXhosa 23.3 33.3 30.5 40.3 28.6 46.3 27.0 55.8
Yorùbá 31.0 42.6 55.1 58.5 52.3 52.5 51.0 51.3
isiZulu 33.4 43.1 49.4 54.9 43.8 61.0 39.2 66.7
Average 45.2 56.6 62.4 65.7 60.3 65.4 59.8 65.7

Opinion Target Extraction

English 60.4 79.6 75.7 85.2 82.1 86.6 82.6 84.8
Spanish 33.7 27.5 54.0 57.5 61.0 62.0 77.8 79.4
French 23.3 20.8 50.5 53.6 56.5 58.4 74.1 76.6
Dutch 42.1 42.7 63.5 67.4 73.0 75.1 74.1 77.1
Russian 15.3 23.4 55.2 62.5 66.1 68.8 71.1 75.7
Turkish 22.0 31.9 33.6 44.7 56.8 55.6 56.8 57.7
Average 27.3 29.2 51.3 57.2 62.7 64.0 70.8 73.3

Event Extraction

EnglishTrigger 67.2 74.5 76.6 78.1 77.5 77.5 78.9 78.9
ChineseTrigger 0.0 0.0 33.3 34.1 54.7 54.7 49.6 52.1

All Tasks Average 24.1 28.6 49.0 52.3 59.2 61.4 60.0 63.7

Table 5: F1 scores for different text-to-text models
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