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CHAPTER 1

On the Role of Morphology in Contextual Lemmatization

This chapter is based on the following publication:

Olia Toporkov and Rodrigo Agerri (2024). On the Role of Morphological Information
for Contextual Lemmatization. In Computational Linguistics (MIT Press). Talk
presented at the main conference of EMNLP 2025.

Abstract: Lemmatization is a Natural Language Processing (NLP) task which consists
of producing, from a given inflected word, its canonical form or lemma. Lemmatization is
one of the basic tasks that facilitate downstream NLP applications, and is of particular
importance for high-inflected languages. Given that the process to obtain a lemma
from an inflected word can be explained by looking at its morphosyntactic category,
including fine-grained morphosyntactic information to train contextual lemmatizers
has become common practice, without considering whether that is the optimum in
terms of downstream performance. In order to address this issue, in this paper we
empirically investigate the role of morphological information to develop contextual
lemmatizers in six languages within a varied spectrum of morphological complexity:
Basque, Turkish, Russian, Czech, Spanish and English. Furthermore, and unlike the
vast majority of previous work, we also evaluate lemmatizers in out-of-domain settings,
which constitutes, after all, their most common application use. The results of our
study are rather surprising. It turns out that providing lemmatizers with fine-grained
morphological features during training is not that beneficial, not even for agglutinative
languages. In fact, modern contextual word representations seem to implicitly encode
enough morphological information to obtain competitive contextual lemmatizers without
seeing any explicit morphological signal. Moreover, our experiments suggest that the
best lemmatizers out-of-domain are those using simple UPOS tags or those trained
without morphology. Finally, we demonstrate that current evaluation practices for
lemmatization are not adequate to clearly discriminate between models and to manifest
the shortcoming of current lemmatization techniques.
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1.1 Introduction

Lemmatization is one of the basic NLP tasks which consists of converting an inflected
word form (e.g., eating, ate, eaten) into its canonical form (e.g., eat), usually known as
the lemma, as formulated by the SIGMORPHON 2019 shared task (Aiken et al., 2019).
Lemmatization is commonly used when expanding search criteria in information retrieval
or to reduce dimensionality of problems in NLP tasks such as information extraction, text
classification, and others. For example, for morphologically rich languages named entities
are often inflected, which means that lemmatization is required as an additional process.
Lemmatization is more challenging for languages with rich inflection as the number of
variations for every different word form in such languages is very high. Table 1.1 illustrates
this point by showing the differences in inflections of the word ‘cat’ for four languages
with different morphological structure. This language sample offers a spectrum of varied
complexity, ranging from the more complex ones, Basque and Russian, to the less inflected
ones, such as Spanish and English, in that order.

English Spanish Russian Basque

cat gato KOT katu
cats gata KOTBI katuak
gatos KOTa katua
gatas KOTY katuari
KOTOM katuarekin
KOTe katuek
KOTOB katuekin
KOTaM katuei
KOTaMH katuen
KOTax katurik
katuarentzat
katuentzat

Table 1.1: Examples of inflected forms of the word ‘cat’ in Basque, English, Spanish and Russian.

As we can see in Table 1.1, the word ‘cat’ can vary in English by changing from
singular to plural. In Spanish gender (masculine/feminine) is also marked. Things get
more complicated with languages that mark case. For example, in Russian there are six
cases while for Basque there are 16, some of which can be doubly inflected.

Both the context in which it occurs and the morphosyntactic form of a word play a
crucial role to approach automatic lemmatization (McCarthy et al., 2019). Thus, in Figure
1.1 we can see a fragment of a Russian sentence in which each inflected word form has a
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Morph.tag: FEM; INAN; FEM; IPFV; FIN; INAN; MASC; ADP  INAN; NEUT
NOM; SG; N V; 5G; IND; PST; INS; 5G; N INS; 5G; N
MID
Lemma: newepa 3aKaH4YMBaTbCcA  3an c o3epo .
Inflection: Mewepa 3aKaH4YMBanace 3anom c o3epom .
Translation: The cave ended with a hall with alake.

Figure 1.1: Example of a morphologically tagged and lemmatized sentence in Russian using the
UniMorph annotation scheme.

corresponding lemma (in red). Furthermore, each inflected form has an associated number
of morphosyntactic features (expressed as tags) depending on its case, number, gender,
animacy and others. Morphological analysis is crucial for lemmatization as it explains
the process required to produce the lemma from the word form, which is why it has
traditionally been used as a stepping stone to design systems to perform lemmatization.

As many other tasks in NLP, the first approaches to lemmatization were rule-based,
but nowadays the best performing models address lemmatization as a supervised task
in which learning in context is crucial. Regardless of the learning method used, three
main trends can be observed in current contextual lemmatization: (i) those that use gold
standard or learned morphological tags to generate features to learn lemmatization in a
pipeline approach (Chrupala et al., 2008; Yildiz and Tantug, 2019); (ii) those that aim
to jointly learn morphological tagging and lemmatization as a single task (Miiller et al.,
2015; Malaviya et al., 2019; Straka et al., 2019); (iii) systems that do not use any explicit
morphological signal to learn to lemmatize (Chakrabarty et al., 2017; Bergmanis and
Goldwater, 2018).

Research on contextual (mostly neural) lemmatization was greatly accelerated by the
first release of the Universal Dependencies (UD) data (de Marneffe et al., 2014; Nivre
et al., 2017), but specially by the contextual lemmatization shared task organized at
SIGMORPHON 2019, which included UniMorph datasets for more than 50 languages
(McCarthy et al., 2019). It should be noted that the best models in the task used
morphological information either as features (Yildiz and Tantug, 2019) or as part of
a joint or a multitask approach (Straka et al., 2019). However, the large majority of
previous approaches have used all the morphological tags from UniMorph/UD assuming
that fine-grained morphological information must be always beneficial for lemmatization,
especially for highly inflected languages, but without analyzing whether that is the
optimum in terms of downstream performance.

In order to address this issue, in this paper we empirically investigate the role of
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morphological information to develop contextual lemmatizers in six languages within
a varied spectrum of morphological complexity: Basque, Turkish, Russian, Czech,
Spanish and English. Furthermore, previous work has shown that morphological
taggers substantially degrade when evaluated out-of-domain, be that any type of text
different from the data used for training in terms of topic, text genre, temporality,
etc. (Manning, 2011). This point led us to research whether lemmatizers based on
fine-grained morphological information will degrade more when used out-of-domain than
those requiring only coarse-grained UPOS tags. We believe that this is also an important
point because lemmatizers are mostly used out-of-domain, namely, to lemmatize data
from a different distribution with respect to the one that was employed for training.

Taking these issues into consideration, in this paper we set to investigate the following
research questions with respect to the actual role of morphological information to perform
contextual lemmatization. First, is fine-grained morphological information really
necessary, even for high-inflected languages? Second, are modern context-based word
representations enough to learn competitive contextual lemmatizers without including
any explicit morphological signal for training? Third, do morphologically enriched
lemmatizers perform worse out-of-domain as the complexity of the morphological
features increases? Four, what is the optimal strategy to obtain robust contextual
lemmatizers for out-of-domain settings? Finally, are current evaluation practices
adequate to meaningfully evaluate and compare contextual lemmatization techniques?

The conclusions from our experimental study are the following: (i) fine-grained
morphological features do not always benefit, not even for agglutinative languages; (ii)
modern contextual word representations seem to implicitly encode enough morphological
information to obtain state-of-the-art contextual lemmatizers without seeing any explicit
morphological signal; (iii) the best lemmatizers out-of-domain are those using simple
UPOS tags or those trained without explicit morphology; (iv) current evaluation
practices for lemmatization are not adequate to clearly discriminate between models,
and other evaluation metrics are required to better understand and manifest the
shortcomings of current lemmatization techniques. The generated code and datasets are
publicly available to facilitate the reproducibility of the results and further research on
this topic.!

The rest of the paper is structured as follows. The next section discusses the most
relevant work related to contextual lemmatization. The systems and datasets used in
our experiments are presented in Sections 1.4 and 1.3, respectively. Section 1.5 presents
the experimental setup applied to obtain the results, which are reported in Section 1.6.
Section 1.7 provides a discussion and error analysis of the results. We finish with some
concluding remarks in Section 1.8.

"https://github.com/oltoporkov/morphological-information-datasets
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1.2 Background

First approaches to lemmatization consisted of systems based on dictionary lookup
and/or rule-based finite state machines (Karttunen et al., 1992; Oflazer, 1993; Alegria
et al., 1996; van den Bosch and Daelemans, 1999; Dhonnchadha, 2002; Segalovich, 2003;
Carreras et al., 2004; Stroppa and Yvon, 2005; Jongejan and Dalianis, 2009). Grammatical
rules in such systems, either hand-crafted or learned automatically by using machine
learning, were leveraged to perform lemmatization together with the use of lexicons or
morphological analyzers that returned the correct lemma. The problem of unseen and
rare words was solved by generating a set of exceptions added to the general set of rules
(Karttunen et al., 1992; Oflazer, 1993) or by using a probabilistic approach (Segalovich,
2003). Such systems resulted in very language-dependent approaches, and in most of the
cases they required huge linguistic knowledge and effort, especially in the case of those
languages with more complex, high-inflected morphology.

The appearance of large annotated corpora with morphological information and
lemmas facilitated the development of machine learning methods for lemmatization
in multiple languages. One of the core projects that gathered annotated corpora for
more than 90 languages is the Universal Dependencies (UD) initiative (Nivre et al.,
2017). This project offers a unified morphosyntactic annotation across languages
with language-specific extensions when necessary. Based on the UD data, the
Universal Morphology (UniMorph) project (McCarthy et al., 2020) converted the UD
annotations into UniMorph, a universal tagset for morphological annotation (based on
Sylak-Glassman (2016)), where each inflected word form is associated with a lemma and
a set of morphological features. The current UniMorph dataset includes 118 languages,
including extremely low-resourced languages such as Quechua, Navajo and Haida.

The assumption that context could help with unseen and ambiguous words led to the
creation of supervised contextual lemmatizers. The pioneer work on this topic is perhaps
the statistical contextual lemmatization model provided by Morfette (Chrupala et al.,
2008). Morfette uses a Maximum Entropy classifier to predict morphological tags and
lemmas in a pipeline approach. Interestingly, instead of learning the lemmas themselves,
Chrupala et al. (2008) propose to learn automatically induced lemma classes based on
the shortest edit script (SES), which consists of the number of edits necessary to convert
the inflected word form into its lemma. Morfette has influenced many other works on
contextual lemmatization, such as the system of Gesmundo and Samardzi¢ (2012), IXA
pipes (Agerri et al., 2014; Agerri and Rigau, 2016), Lemming (Miiller et al., 2015)
and the system of Malaviya et al. (2019). The importance of using context to learn
lemmatization is investigated in the work of Bergmanis and Goldwater (2018). They
compare context-free and context-sensitive versions of their neural lemmatizer Lematus
and evaluate them across 20 languages. Results show that including context substantially
improves lemmatization accuracy and it helps to better deal with the out-of-vocabulary
problem.

The next step in the development of contextual lemmatization systems came
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with the supervised approaches based on deep learning algorithms and vector-based
word representations (Chakrabarty et al., 2017; Dayanik et al., 2018; Bergmanis and
Goldwater, 2018; Malaviya et al., 2019). The parallel development of the Transformer
architecture (Vaswani et al., 2017) and the appearance of BERT (Devlin et al., 2019)
and other Transformer-based masked language models (MLMs) offered the possibility to
significantly improve lemmatization results. Thus, most of the participating systems in
the SIGMORPHON 2019 shared task on contextual lemmatization for 66 languages were
based on MLMs (McCarthy et al., 2019). The baseline provided by the task was based
on the work of Malaviya et al. (2019), a system which performs joint morphological
tagging and lemmatization.

To the best of our knowledge, current state-of-the-art results in contextual
lemmatization are provided by those models that achieved best results in the
SIGMORPHON 2019 shared task. The highest overall accuracy was achieved by
UDPipe (Straka et al., 2019). Using UDPipe 2.0 (Straka, 2018) as a baseline, they added
pre-trained contextualized BERT and Flair embeddings as an additional input to the
network. The overall accuracy (average across all languages) was 95.78, the best among
all the participants.

The second best result (95 overall word accuracy) in the task was obtained by
the CHARLES-SAARLAND system (Kondratyuk, 2019). This system consists of a
combination of a shared BERT encoder and joint lemma and morphology tag decoder.
The model uses a two-stage training process, in which it first performs a multilingual
training over all treebanks, and then they execute the same process monolingually,
maintaining the previously learned multilingual weights. Morphological tags in this case
are calculated jointly and lemmas are also represented as SES. The experiments are
performed using multilingual BERT in combination with the methods introduced by
UDify (Kondratyuk and Straka, 2019) for BERT fine-tuning and regularization.

The third best result (94.76) was reported by Morpheus (Yildiz and Tantug,
2019). Morpheus uses a two-level LSTM network which gets as input the vector-based
representations of words, morphological tags and SES. Morpheus then aims to jointly
output, for a given sequence, their corresponding morphological labels and the SES
representing the lemma class which is later decoded into its lemma form.

Thus, it can be seen that a common trend in current contextual lemmatization is
to use the morphological information provided by the full UniMorph labels without
taking into consideration whether this is the optimal setting. Furthermore, lemmatization
techniques are only evaluated in-domain, resulting in extremely, and perhaps deceptive,
high results for the large majority of the 66 languages included in the SIGMORPHON
2019 data.

1.3 Languages and Datasets

In order to address the research questions formulated in the Introduction, we selected the
following six languages: Basque, Turkish, Russian, Czech, Spanish and English. Such a

6/71



Original Article - Rodrigo Agerri Position: IDPTCL1-D00141-1

choice will allow us to compare the role of fine-grained morphological information to learn
contextual lemmatization within a range of languages of varied morphological complexity.
In this section we briefly describe general morphological characteristics of each language
as well as the specific datasets used.

1.3.1 Languages

Basque and Turkish are agglutinative languages with morphology mostly of the suffixing
type. Basque is a language isolate and does not belong to any language group while
Turkish is a member of the Oghuz group of the Turkic family. These two languages have
no grammatical gender, with some particular exceptions for domestic animals, people and
foreign words (Turkish) or in some colloquial forms when the gender of the addressee is
expressed for the second person singular pronoun (Basque). Turkish and Basque have
two number types (singular and plural), and in Basque there is also the unmarked
number (undefined or mugagabea). In both Turkish and Basque the cases are expressed
by suffixation.

Basque is an ergative-absolutive language containing 16 cases, meaning that the
grammatical case marks both the subject of an intransitive verb and the object of a
transitive verb. The verb conjugation is also specific for this language: the majority of
the verbs are formed by a combination of a gerund form and a conjugated auxiliary verb.

Turkish has six general cases; nouns and adjectives are not distinguished
morphologically and adjectives can also be used as adverbs without modifications
or by doubling of the word. For verbs there are 9 simple and 20 compound tenses. There
is a relatively small set of core vocabulary and the majority of Turkish words originate
from applying derivative suffixes to nouns and verbal stems.

The two Slavic languages, namely, Russian and Czech, which have a fusional
morphological system, exhibit a highly inflectional morphology and a wide number
of morphological features. Russian belongs to the East Slavic language group, while
Czech is a West Slavic language. These two languages have nominal declension which
involves six main grammatical cases for Russian and seven for Czech. Both languages
distinguish between two number (singular and plural) and three gender types (masculine,
feminine and neuter). Furthermore, the masculine gender is subdivided into animate
and inanimate. Verbs are conjugated for tense (past, present or future) and mood.

Spanish is a Romance language that belongs to Indo-European language family. It
is a fusional language, which has a tendency to use a single inflectional morpheme to
denote multiple grammatical, syntactic or semantic features. Nouns and adjectives in
Spanish have two gender (male, female) and two number types (singular and plural).
Besides, some articles, pronouns and determiners also possess a neuter gender. There are
3 main verb tenses (past, present and future) and each verb has around fifty conjugated
forms. Apart from that, Spanish has 3 verboid forms (infinitive, gerund, past participle),
perfective and imperfective aspects for past, 4 moods and 3 persons.
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Finally, English is a Germanic language, also part of Indo-European language family.
It has lower inflection in comparison to previously mentioned languages. Only nouns,
pronouns and verbs are inflected, while the rest of the parts of speech are invariable. In
English animate nouns have two genders (masculine or feminine) and the third person
singular pronouns distinguish three gender types: masculine, feminine, and neuter, while
for most of the nouns there is no grammatical gender. Nouns have only a genitive case
and personal pronouns are mostly declined in subjective and objective cases. English has
a variety of auxiliary verbs that help to express the categories of mood and aspect and
participate in the formation of verb tenses.

1.3.2 Datasets

The datasets we used are distributed as part of the data used for the SIGMORPHON 2019
shared task (McCarthy et al., 2019). The source of the original datasets comes from the
Universal Dependencies (UD) project (de Marneffe et al., 2014), but the morphological
annotations are converted from UD annotations to the UniMorph schema (Kirov et al.,
2018) with the aim of increasing agreement across languages. As our experiments will
include both in-domain and out-of-domain evaluations, we selected some datasets for
each of the settings.

With respect to in-domain, we chose one corpus per language using the standard
train and development partitions. For Basque we used the Basque Dependency Treebank
(BDT) (Aldezabal et al., 2008), which contains mainly literary and journalistic texts.
The corpus was manually annotated and then automatically converted to UD format.
For Czech we used the CAC treebank (Hladké et al., 2008) based on the Czech Academic
Corpus 2.0. This corpus includes mostly unabridged articles from a wide range of
media such as newspapers, magazines and transcripts of spoken language from radio
and TV programs. The corpus was annotated manually and then converted to UD
format. With respect to English we chose English Web Treebank (EWT) (Silveira et al.,
2014). This corpus includes different Web sources: blogs, various media, e-mails, reviews
and Yahoo! answers. In the EWT corpus the lemmas were assigned by UD-converter
and manually corrected. UPOS tags were also converted to UD format from manual
annotations. For Russian we used GSD corpus, extracted from Wikipedia and manually
annotated by native speakers. In the case of Spanish we selected the GSD corpus
as well, consisting of texts from blogs, reviews, news and Wikipedia. Finally, for
Turkish we used ITU-METU-Sabanci Treebank (IMST) (Sulubacak et al., 2016). It
consists of well-edited sentences from a wide range of domains, manually annotated and
automatically converted to UD format.

For the out-of-domain evaluation setting we picked the test sets of other datasets
included in UniMorph, different from the ones selected for in-domain experimentation. In
the case of Basque, only one corpus was available in the Universal Dependencies project,
so we used the Armiarma corpus which consists of literary critics semi-automatically
annotated using Eustagger (Alegria et al., 1996). For Czech and Turkish we used the PUD
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data — part of the Parallel Universal Dependencies treebanks created for the CoNLL 2017
shared task (Zeman et al., 2017). The corpora consist of 1,000 sentences from the news
domain and Wikipedia annotated for 18 languages. The Czech language PUD data was
manually annotated and then automatically converted to UD format. For Turkish the
original data was automatically converted to UD format, but later manually reannotated
(Tiirk et al., 2019). In the case of English we used the Georgetown University Multilayer
(GUM) corpus (Zeldes, 2017). This corpus presents a collection of annotated Web texts
from interviews, news, travel guides, academic writing, biographies and fiction from such
sources as Wikipedia, Wikinet and Reddit. Its lemmas were manually annotated, while
UPOS tags were converted to UD format from manual annotations. In the case of Russian
we used SynTagRus (Lyashevkaya et al., 2016), which consists of texts from a variety of
genres, such as contemporary fiction, popular science, as well as news and journal articles
from the 1960-2016 period. Its lemmas, UPOS tags and morphological features were
manually annotated in non-UD style and then automatically converted to UD format.
For Spanish we chose the AnCora corpus (Taulé et al., 2008), which contains mainly texts
from news. All the elements of this corpus were converted to UD format from manual
annotations.

1.4 Systems

In this section we present the systems that we will be applying in our investigation.
First, research on the role of fine-grained morphological information for contextual
lemmatization will be performed in-domain using the statistical lemmatizer from the
IXA pipes toolkit (Agerri and Rigau, 2016) and Morpheus, the third best system in
the SIGMORPHON 2019 shared task. These two systems were chosen due to several
reasons: (i) both use morphological information as features to learn lemmatization and,
(ii) both systems use SES to represent automatically induced lemma classes; and (iii),
they both address contextual lemmatization as sequence tagging.

In order to investigate whether modern contextual word representations are enough to
learn, without any explicit morphological signal, competitive lemmatizers both in- and
out-of-domain, we train baseline models using Flair (Akbik et al., 2018), multilingual
MLMs mBERT and XLM-RoBERTa (Devlin et al., 2019; Conneau et al., 2020) as well
as language-specific MLLMs for each of the languages: BERTeus for Basque (Agerri et al.,
2020), slavicBERT for Czech (Arkhipov et al., 2019), RoBERTa for English (Liu et al.,
2019), Russian ruBERT (Kuratov and Arkhipov, 2019), Spanish BETO (Cafete et al.,
2020) and BERTurk for Turkish.? As with Morpheus and IXA pipes, we treat contextual
lemmatization as a sequence tagging task and fine-tune the language models by adding
a single linear layer to the top of the model. The experiments were implemented using
the HuggingFace Transformers API (Wolf et al., 2020).

’https://github.com/stefan-it/turkish-bert
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1.4.1 Systems using morphology

IXA pipes is a set of multilingual tools which is based on a pipeline approach (Agerri
et al., 2014; Agerri and Rigau, 2016). IXA pipes learns perceptron (Collins, 2002) models
based on shallow local features combined with pre-trained clustering features induced
over large unannotated corpora. The lemmatizer implemented in IXA pipes is inspired
by the work of Chrupala et al. (2008), where the model learns the SES between the word
form and its lemma. IXA pipes allows to learn lemmatization using gold-standard or
learned morphological tags.

Morpheus is a neural contextual lemmatizer and morphological tagger which consists
of two separate sequential decoders for generating morphological tags and lemmas.
The input words and morphological features are encoded in context-aware vector
representations using a two-level LSTM network and the decoders predict both the
morphological tags and the SES, which are later decoded into its lemma (Yildiz and
Tantug, 2019). Morpheus obtained the third best overall result in the SIGMORPHON
2019 shared task (McCarthy et al., 2019).

1.4.2 Systems without explicit morphological information

We train a number of models that use modern contextual word representations by
addressing lemmatization as a sequence tagging task. Thus, the input consists of words
encoded as contextual vector representations and the task is to assign the best sequence
of SES to a given input sequence.

Flair is a NLP framework based on a BiLSTM-CRF architecture (Huang et al., 2015;
Ma and Hovy, 2016) and pre-trained language models that leverage character-based
word representations which, according to the authors, capture implicit information about
natural language syntax and semantics. Flair has obtained excellent results in sequence
labelling tasks such as named entity recognition, POS tagging and chunking (Akbik et al.,
2018). The library includes pre-trained Flair language models for every language except
Turkish.

With respect to the MLMs, we use two multilingual models and 6 language models
trained specifically for each of the languages included in our study. Multilingual BERT
(Devlin et al., 2019) is a Transformer-based masked language model, pre-trained on
the Wikipedias of 104 languages with both the masking and next sentence prediction
objectives. Furthermore, we also use XLM-RoBERTa (Conneau et al., 2020), trained
on 2.5TB (295K millions of tokens) of filtered CommonCrawl data for 100 languages.
XLM-RoBERTza is based on the BERT architecture but (i) trained only on the MLM task,
(ii) on larger batches (iii) on longer sequences and (iv), with dynamic mask generation.
Thus, multilingual BERT was trained with a batch size of 256 and 512 sequence length
for 1M steps, using both the MmLM and NSP tasks. Regarding XLM-RoBERTa, both
versions (base and large) were trained over 1.5M steps with batch 8192 and sequences of
512 length.
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Language Model Architecture | Training corpus and number of
tokens
Basque BERTeus BERT 35M tokens (Wikipedia) + 191M
tokens (online)
Czech slavicBERT BERT Russian news and Wikipedia in
Russian,

Bulgarian, Czech and Polish

English RoBERTa BERT BookCorpus (800M tokens),

CC-News (16,000M tokens),
OpenWebText (8,706M tokens),
CC-Stories (5,300M tokens)

Russian ruBERT BERT Dataset for original BERT
(BookCorpus(800M tokens)),

English Wikipedia (2,500M tokens),

Russian news and Wikipedia for
subword vocabulary

Spanish BETO BERT Wikipedia and OPUS project in
Spanish (3,000M tokens)

Turkish BERTurk BERT OSCAR corpus, Wikipedia, OPUS
corpora, corpus of Kemal Oflaizer
(4,404M tokens total)

Table 1.2: List of language-specific models used in the experiments for each of the target
languages.

Details about the six language-specific MLMs used are provided in Table 1.2.
BERTeus (Agerri et al., 2020) is a BERT-base model trained on the BMC Basque
corpus, which includes the Basque Wikipedia and news articles from online newspapers.
Apart from the training data, the other difference from original BERT is the subword
tokenization, which is closer to linguistically interpretable strings in Basque. BERTeus
significantly outperforms multilingual BERT and XLM-RoBERTa in tasks such as POS
tagging, named entity recognition, topic modelling and sentiment analysis.

BERTurk? is a cased BERT-base model for Turkish. This model was trained on a
filtered and sentence segmented version of the Turkish OSCAR corpus (Ortiz Sudrez
et al., 2019), together with Wikipedia, various OPUS corpora (Tiedemann, 2016) and
data provided by Kemal Oflazer, which resulted in total size of 35GB (4,404M tokens
total).

For Czech we used slavicBERT (Arkhipov et al., 2019), developed by taking

3https://github.com/stefan-it/turkish-bert
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multilingual BERT as a basis and further pre-trained using Russian news and the
Wikipedias of four Slavic languages: Russian, Bulgarian, Czech and Polish. The authors
also rebuilt the vocabulary of subword tokens, using the subword-nmt repository.*

RuBERT was developed in a similar fashion as slavicBERT but only with Russian as
target language using the Russian Wikipedia and news corpora (Kuratov and Arkhipov,
2019). They generated a new subword vocabulary obtained from subword-nmt which
contains longer Russian words and subwords.

For Spanish we used BETO (Canete et al., 2020) — a BERT-base language model,
trained on a large Spanish corpus. The authors of this model upgraded the initial
BERT model by using the Dynamic Masking technique, introduced in RoBERTa. BETO
performed 2M steps in two different stages: 900K steps with a batch size of 2048 and
maximum sequence length of 128, and the rest of the training with a batch size of 256
and maximum sequence length of 512. We use the version trained with cased data, which
included the Spanish Wikipedia and various sources from the OPUS project (Tiedemann,
2012) in a final corpus size of around 3 billion words.

RoBERTa-base is the model chosen for English. RoBERTa (Liu et al., 2019) is an
optimized version of BERT, as commented above. To train this model the authors, apart
from the standard datasets used to train the BERT model, also used the CC-news dataset,
including English news articles from all over the world published between January 2017
and December 2019. The total size of the training data exceeds 160GB of uncompressed
text (more than 30 billion tokens).

1.4.3 Baselines

We use two models as baselines. First, the system used as a baseline for the
SIGMORPHON 2019 shared task (McCarthy et al., 2019), a joint neural model
for morphological tagging and lemmatization presented by Malaviya et al. (2019).
This system performs morphological tagging by using a LSTM tagger described in
Heigold et al. (2017) and Cotterell and Heigold (2017). The lemmatizer is a neural
sequence-to-sequence model (Wu and Cotterell, 2019) which includes a hard attention
mechanism with a training scheme based on dynamic programming. The tagger and
lemmatizer are connected together by jackknifing (Agi¢ and Schluter, 2017), which
allows to avoid exposure bias and improve lemmatization results.

The second baseline is the winner of the SIGMORPHON’19 shared task (Straka
et al., 2019). UDPipe is a multitask model which jointly learns morphological tagging
and lemmatization. The system architecture consists of three bidirectional LSTMs that
process the input and softmax classifiers that generate lemmas and morphosyntactic
features. Lemmatization is performed as a multiclass classification task, where the system
predicts the correct lemma rule or SES.

“https://github.com/rsennrich/subword-nmt/
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1.5 Experimental Setup

The systems described above were trained on the datasets listed in Section 1.3.2 using
the following methodology. For the two IXA pipes models (using gold-standard and
learned morphology) we used the default feature set, with and without clustering features,
specified in Agerri and Rigau (2016). The default hyperparameters were also applied to
train Morpheus (Yildiz and Tantug, 2019). The input character embedding length d, is
set to 128, the length of the word vectors d. to 1024 and the length of the context-aware
word vectors d. to 2048. Moreover, the length of character vectors in the minimum edit
prediction component d, and the length of the morphological tag vectors d, are set to
256. The hidden unit sizes in the decoder LSTMs d; and d, are set to 1024. The Adam
optimization algorithm is used with learning rate 3e-4 to minimize the loss (Kingma and
Ba, 2015).

Flair is used off-the-shelf with FastText CommonCrawl word embeddings (Grave
et al., 2018) combined with Flair contextual embeddings for each of the languages. The
hidden size of the LSTM is set to 256 with a batch of 16.

The MLMs were fine-tuned for lemmatization as a sequence tagging task by adding a
single linear layer on top of the model being fine-tuned. A grid search of hyperparameters
was performed to pick the best batch size (16, 32), epochs (5, 10, 15, 20, 25) and learning
rate (le-0, 2e-5, 3e-5, be-5). We pick the best model on the development set in terms of
word accuracy and loss. A fixed seed is used to ensure reproducibility of the results.

For multilingual BERT we used a maximum sequence length of 128, batch size 32
and 5e-5 as learning rate while for XLM-RoBERTa we used the same configuration but
with a batch of 16. For Russian we perform grid search on two language-specific models,
namely, ruBERT and slavicBERT. RuBERT obtained the best results with a maximum
sequence length of 128, batch size 16, and a 5e-5 value for learning rate over 15 epochs.
For the rest of the models the best configuration was that of XLM-RoBERTa over 5
epochs for BETO and RoBERTa-base, 10 epochs for BERTeus, 15 epochs for BERTurk
and 20 epochs with slavicBERT for Czech.

1.6 Experimental Results

In this section we present the experiments to empirically address the following research
questions with respect to the actual role of morphological information to perform
contextual lemmatization, namely, (i) is fine-grained morphological information really
necessary, even for agglutinative languages? (ii) are modern context-based word
representations enough to learn competitive contextual lemmatizers without including
any explicit morphological signal during training? (iii) do morphologically enriched
lemmatizers perform worse out-of-domain as the complexity of the morphological
features increases? (iv) what is the optimal strategy to obtain robust contextual
lemmatizers for out-of-domain settings? and (v), are current evaluation practices
adequate to meaningfully evaluate and compare contextual lemmatization techniques?
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Unlike the vast majority of previous work on contextual lemmatization, which has
been mostly evaluated in-domain (McCarthy et al., 2019), we also report results in
out-of-domain settings. It should be noted that by out-of-domain we mean to evaluate
the model on a different data distribution from the data used for training (Manning,
2011).

First, Section 1.6.1 studies the in-domain performance of contextual lemmatizers
depending on the type of morphological features used to inform the models during
training. The objective is two-fold: to determine whether complex (or any at all)
morphological information is required to obtain competitive lemmatizers and, secondly,
to establish whether modern contextual word representations and MLMs allow us to
perform lemmatization without any morphological information.

Second, in the out-of-domain evaluation presented in Section 1.6.2 we analyze the
performance of morphologically informed lemmatizers. Furthermore, comparing them
with contextual lemmatizers developed without an explicit morphological signal would
allow us to obtain a full picture as to what is the best strategy for out-of-domain settings
(the most common application scenario).

1.6.1 In-domain evaluation

For the first experiment we train the two variants of the IXA pipes statistical system,
ixa-pipe-gs and ixa-pipe-mm (Agerri and Rigau, 2016), and one neural lemmatizer,
Morpheus (Yildiz and Tantug, 2019). As explained in Section 1.4, all three require explicit
morphological information and they all apply shortest edit scripts (SES) to automatically
induce lemma classes from the training data.

Morphological label Short Form
UPOS UPOS
UPOS+Case+Gender UCG
UPOS+Case+Number UCN
UPOS+Case+Gender+Number UCGN
UPOS+AllFeaturesOrdered UAllo

Table 1.3: List of UniMorph morphological tags used.

Furthermore, we combined the UniMorph morphological tags to generate labels
of different complexity. Thus, taking UPOS tags as a basis we obtain 5 different
morphological tags, as shown in Table 1.3. The first 4 are combinations of UPOS, case,
gender and number. The last label includes UPOS and every feature present for a given
word in UniMorph in the following order: {UPOS+Case+Gender+Number+All}. For
some word types, such as prepositions or infinitives, UniMorph only includes the UPOS
tag. In order to illustrate this, Table 1.4 provides an example originally in Russian
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Word form Morphological label Lemma
ITpoext|Project] NNOMMASC IpoeKT|project|
cubHO[a lot] ADV cubHO[a lot]
ornmaascs| differed| VMASC ormaarses|to differ]
or[from] ADP or[from|
upenplymux|previous]  ADJGEN pe bl Ly it previous|
nojonok|[submarines]  NGENFEM noJIoKal submarine]

Table 1.4: An example of the data used to train contextual lemmatizers with
{UPOS+Case+Gender} (UCG) morphological information.

including the information required to train contextual lemmatizers, namely, the word,
some morphological tag, and the lemma.

Putting it all together, Table 1.5 characterizes the final datasets used for in- and
out-of-domain evaluation. The number of tokens, unique labels per category and unique
SES (calculated using the UDPipe method) illustrate the varied complexity of the
languages involved.? Thus, those languages with more complex morphology have a
higher number of unique labels that include additional morphological features. The
same pattern can be seen in the amount of lemma classes (SES), significantly larger for
the languages with more complex morphology. In the case of Turkish the low number of
lemmas could be explained by the fact that most Turkish words are formed by applying
derivative suffixes to nouns and verbal stems. Moreover, the core vocabulary in this
particular corpus is rather small. Finally, we decided to order the subtags comprising
the full UniMorph labels as the number of unique labels decreased significantly.

Table 1.6 reports the in-domain results of training the three systems for the six
languages with the 5 different types of morphological labels. First, the results show
that the neural lemmatizer Morpheus outperforms the statistical lemmatizers for every
language except English. In fact, for languages with more complex morphology, such
as Basque and Turkish, the differences are larger. Second, if we look at the impact of
including fine-grained morphological features it can be seen that no single morphological
tag performs best across systems and languages. Thus, while adding case, number and /or
gender seems to be slightly beneficial, differences in performance are substantial when
training the statistical lemmatizer using gold-standard morphological labels (ixa-pipe-gs)
and especially for languages with more complex morphology (Basque, Russian, Turkish).
Third, the results clearly show that adding every available morphological feature is not
beneficial per se. Fourth, the statistical lemmatizer trained with learned morphological
tags (ixa-pipe-mm) performs significantly worse in every case except for English and

SEven though it is not required for out-of-domain evaluation, the UniMorph information is not
available for the Basque Armiarma corpus because it is not part of the UniMorph project.
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lang | data | #toks | UPOS | UCGN | UAllo | UnAllo | SES
train (BDT) 97,336 15 205 1,143 1,683 | 1,306
dev (BDT) 12,206 14 148 556 787 432
Basque
test (BDT) 11,901 14 153 545 773 428
test (Armiarma) | 299,206 - - - - | 1,495
train (CAC) 395,043 16 332 1,266 1,784 946
dev (CACQC) 50,087 16 298 876 1,129 536
Czech
test (CAC) 49,253 15 284 827 1,036 556
test (PUD) 1,930 14 175 288 292 151
train (GSD) 79,989 14 241 851 1,384 553
) dev (GSD) 9,526 14 191 435 673 235
Russian
test (GSD) 9,874 14 203 455 713 258
test (SynTagRus) | 109,855 15 247 757 1,243 896
train (GSD) 345,545 25 116 287 510 310
. dev (GSD) 42,545 23 100 208 342 200
Spanish
test (GSD) 43,497 23 103 222 387 200
test (AnCora) 54,449 15 75 178 309 298
train (EWT) 204,857 16 43 94 173 233
. dev (EWT) 24,470 16 41 88 160 | 120
English
test (EWT) 25,527 16 41 85 156 115
test (GUM) 8,189 17 42 72 124 80
train (IMST) 46,417 15 124 1,541 1,897 211
M
Turkish dev (IMST) 5,708 15 95 605 748 106
test (IMST) 5,734 16 100 589 725 104
test (PUD) 1,795 15 66 217 220 59

Table 1.5: Language complexity reflected in the number of labels according to the complexity of
the morphological features, number of lemma classes and corpus tokens.

Spanish. Finally, adding a special label ‘no-tag’ with no morphological information shows
that performance decreases significantly for every system and language.

Summarizing, in-domain performance for high-inflected languages improves when
some fine-grained morphological attributes (case and number or gender) are used to train
the statistical lemmatizers. However, for English and Spanish using UPOS seems to be
enough. Thus, in the case of neural lemmatization with Morpheus (the best of the models
using morphological information), we can see that no substantial gains are obtained by
adding fine-grained morphological features to UPOS tags, not even for agglutinative
languages such as Basque or Turkish.

This point is reinforced by the results of computing the McNemar test of statistical
significance to establish whether the differences in the results obtained by Morpheus (the
best among the models trained with morphology) informed only with UPOS labels or
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English

no-tag UPOS UCG UCN UCGN UAlo

ixa-mm - 98.97 98.97  99.03 98.97 98.86

ixa-gs 96.98 99.51 99.49  99.58 99.59 99.65

morpheus 97.60 98.20 98.12 98.13 98.19 98.14
Spanish

ixa-mm - 98.75 98.74  98.71 98.78 98.74

ixa-gs 98.36 98.82 98.78  98.82 98.80 98.88

morpheus 98.17 98.09 98.93 98.96 98.92 98.91
Russian

ixa-mm - 94.85 95.37  95.69 95.50 95.53

ixa-gs 91.85 95.05 96.95  96.45 96.99 97.04

morpheus 96.50 96.92 96.91 97.10 97.18 97.24
Basque

ixa-mm - 93.19 93.22 93.14 93.30 93.49

ixa-gs 91.68 93.50 94.33  94.58 94.58 96.50

morpheus 95.48 96.30 96.43 96.54 96.37 96.42

Czech

ixa-mm - 97.76 97.17  97.29 97.10 97.10

ixa-gs 95.64 97.68 98.10 97.93 98.09 98.20

morpheus 98.37 98.78 98.84 98.83 98.82 98.80
Turkish

ixa-mm - 84.83 84.51  85.06 85.06 83.95

ixa-gs 85.97 88.81 88.89  89.14 89.14 90.52

morpheus 96.04 96.41 96.53  95.95 96.27 96.50

Table 1.6: In-domain lemmatization results on the development sets for systems that use
morphology to train contextual lemmatizers. ixa-mm: IXA pipes with learned morphological
tags; ixa-gs: IXA pipes with gold standard morphology.
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with the best morphological label (as by Table 1.6 above) are statistically significant or
not (null hypothesis). The result of the test showed that for every language the differences
were not significant (« = .05, with 0.936 p-value for Basque, 0.837 for Czech, 0.511 for
Russian and 0.942 for Spanish).

Taking this into consideration, the next natural step is to consider whether
it is possible to learn good contextual lemmatizers without providing any explicit
morphological signal during training. Previous work on probing contextual word
representations and Transformer-based masked language models (MLMs) suggests that
such models implicitly encode information about part-of-speech and morphological
features (Manning et al., 2020; Akbik et al., 2018; Conneau et al., 2018; Belinkov et al.,
2017). Following this, for this experiment we fine-tune various well-known multilingual
and monolingual language models (detailed in Section 1.4) by using only the word forms
and the automatically induced shortest edit scripts (SES) as implemented by UDPipe
(Straka et al., 2019).

Figure 1.2 reports the results. From left-to-right, the first three bars correspond to
the best statistical and Morpheus models using explicit morphological information as
previously reported in Table 1.6. The next four list the results from Flair, mBERT,
XLM-RoBERTa-base and a language-specific monolingual model (none of these four use
any explicit morphological signal) whereas base (dark purple) refers to the system of
Malaviya et al. (2019), employed as a baseline for the SIGMORPHON 2019 shared task
(McCarthy et al., 2019). For state-of-the-art comparison, the last column on the right
provides the results from UDPipe (Straka et al., 2019) (light purple color). Finally, the
dark blue bars represent the best result for each language without considering either the
baseline system or UDPipe.

The first noticeable trend is that every model beats the baseline except the IXA
pipes-based statistical lemmatizers, which perform over the baseline and comparatively
to the other models for English and Spanish only, the languages with the less complex
morphology.

The second and, perhaps, most important fact is that the four models (Flair, mBERT,
XLM-RoBERTa and mono) which do not use any morphological signal for training, obtain
a remarkable performance across languages, XLM-RoBERTa-base being the best overall,
even better than language-specific monolingual models. In fact, XLM-RoBERTa-base
outperforms Morpheus for 4 out of the 6 languages, a neural model which was the third
best system in the SIGMORPHON 2019 benchmark and which uses all the morphological
information available in the UniMorph data. The McNemar test of significance shows that
the differences in results obtained by Morpheus and XLM-RoBERTa are statistically
significant (o = .05) for Russian, Spanish and English (in XLM-RoBERTa’s favour), and
for Basque and Turkish (Morpheus over XLM-RoBERTa).

An additional observation is our XLM-RoBERTa-base lemmatization models perform
competitively with respect to UDPipe, which obtains the best results for 5 out of the
6 languages included in our study. XLM-RoBERTa also outperforms the monolingual
models, a behaviour that has been reported for other NLP tasks Agerri and Agirre (2023).
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Russian Czech

mBERT  xim-r

English Spanish

0] 906 W95  ggyg  ese s BT6 w49 o 90T o] W89 og74 9002 9902 9001 9908 9904 gguy 9931

xa-mm  ixa-gs  morph flair mBERT  xm-r mono base  UDpipe xa-mm ixa-gs  morph flair mBERT  xim-r mono base  UDpipe

Turkish Basque

ixa-mm  ixa-gs  morph - UDpipe xa-mm  ixa-gs  morph flair mBERT  xm-r mono base  UDpipe

Figure 1.2: Overall in-domain lemmatization results on the test data for models trained with and
without explicit morphological features; monolingual Transformers: Russian - ruBERT, Czech -
slavicBERT, Basque - BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.
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In any case, UDPipe’s strong performance is somewhat expected as it was the overall
winner of the SIGMORPHON 2019 lemmatization task. It should be noted that UDPipe
is a rather complex system consisting of a multitask model to predict POS tags, lemmas
and dependencies by applying three shared bidirectional LSTM layers which take as
input a variety of word and character embeddings, the final model being an ensemble of 9
possible embedding combinations. However, the results obtained by the language models
we trained without any explicit morphological signal, such as XLM-RoBERTa-base,
are based on a simple baseline setting, where the Transformer models are fine-tuned
using the automatically induced SES as the target labels in a token classification task.
These results seem to confirm that, as it was the case for POS tagging and other tasks
(Manning et al., 2020), contextual word representations implicitly encode morphological
information which made them perform strongly for lemmatization.

However, we can see that for agglutinative languages such as Basque and Turkish, the
neural models using explicit morphological features (Morpheus, Malaviya et al. 2019 and
UDPipe) still outperform those without it (although for Basque the differences are much
smaller). Still, the overall results show that, apart from Basque and Turkish, differences
between XLM-RoBERTa and the best model for each language are rather minimal.
This demonstrates that it is possible to generate competitive contextual lemmatization
without any explicit morphological information using a very simple technique, although a
more sophisticated approach or larger language model may be required to be competitive
with the state-of-the-art currently represented by UDPipe.

1.6.2 Out-of-domain evaluation

Although lemmatizers are mostly used out-of-domain, the large majority of the
experimental results published so far do not take this issue into account when evaluating
approaches to contextual lemmatization. In this section we empirically investigate the
out-of-domain performance of the lemmatizers from the previous section to establish
whether: (i) using fine-grained morphological information causes cascading errors in the
lemmatization performance; (ii) whether the lack of morphological information helps to
obtain more robust lemmatizers across domains.

For a better comparison, Table 1.7 presents both the in-domain results presented in
the previous section together with their corresponding out-of-domain performance on the
datasets presented in Section 1.3.

Table 1.7 allows to see the general trend in performance across domains and
with respect to the type of morphological information used. First, and as it could
be expected, out-of-domain performance is substantially worse for every evaluation
setting and particularly significant for highly-inflected languages. Second, in terms
of the type of morphological label, there are no clear differences between the models
using just UPOS tags or those using more fine-grained information, the exception
being Russian and Turkish with the iza-pipe-mm system, for which the highest result
with {UPOS-+Case+Number} is around 1 point in word accuracy better than UPOS.
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In-Domain Out-of-Domain

ixa-mm ixa-gs morpheus ixa-mm ixa-gs morpheus

en - 96.34 97.51 - 90.40 92.47
es - 98.53 98.17 - 89.75 89.70
NO TAG ru - 92.81 95.31 - 83.95 86.84
eu - 90.61 95.69 - 85.64 88.25
cs - 96.37 98.31 - 91.50 91.61
tr - 87.11 95.62 - 77.16 84.07
en 99.11 98.91 98.10 95.38 95.25 92.92
es 98.91 98.76 98.94 97.53 97.41 90.29
ru 94.36 93.74 96.20 90.00 89.40 87.59
UPOS eu 93.11 92.29 96.39 85.22 86.79 88.97
cs 97.86 97.28 98.75 92.33 93.68 91.66
tr 84.65 87.76 96.44 79.22 81.67 84.96
en 99.10 98.92 97.99 95.20 95.24 92.97
es 98.94 98.70 98.98 97.54 97.43 90.31
ru 94.85 93.30 96.21 90.97 89.33 87.67
UCG eu 92.65 92.39 96.34 85.23 86.74 89.09
cs 97.29 96.64 98.76 91.61 91.35 91.92
tr 85.09 87.09 96.18 80.06 81.23 84.74
ixa-mm ixa-gs morph ixa-mm ixa-gs morpheus
en 99.06 98.87 98.01 95.16 95.16 92.86
es 98.92 98.75 99.02 97.56 97.44 90.35
UCN ru 95.07 93.70 96.20 91.00 89.60 87.58
eu 93.03 92.35 96.39 85.47 86.36 89.03
cs 97.44 96.87 98.71 91.04 92.07 92.23
tr 85.52 87.18 96.11 80.33 81.00 84.40
en 99.08 98.96 97.99 95.21 95.15 92.95
es 98.89 98.71 98.97 97.59 97.44 90.38
ru 95.00 93.08 96.44 90.80 89.13 87.66
UCGN eu 93.03 92.28 96.39 85.38 86.55 88.86
cs 97.17 96.68 98.70 91.71 91.50 91.97
tr 85.52 87.18 96.20 80.33 81.00 84.46
en 99.04 98.95 98.06 95.08 95.13 93.15
es 98.86 98.74 99.00 97.54 97.45 90.34
ru 94.75 93.22 96.30 90.88 88.66 87.57
UAllo eu 93.41 94.06 96.50 85.33 86.31 89.11
cs 97.03 96.63 98.70 91.19 91.81 92.02
tr 84.90 86.57 96.22 79.39 80.50 84.96

Table 1.7: In-domain and out-of-domain test results for systems trained with explicit
morphological information. Underline: Best model per language and type of label; bold: best
overall per language.
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Furthermore, there is not a common type of morphological information that works best
across languages. Third, while the statistical lemmatizers are competitive for Spanish
and English, they are clearly inferior for Basque and Turkish. Finally, when looking
at the results in terms of the models using gold-standard morphological annotations
(iza-pipe-gs and Morpheus) it is interesting that they degrade less out-of-domain than
the model using learned morphological tags for most of the cases except for Russian.
Summarizing, we can conclude that adding fine-grained morphological information to
UPOS does not in general result in better out-of-domain performance.

Following this, we would like to evaluate the out-of-domain performance when not
even UPOS labels are used for training. From what we have seen in-domain, the systems
that operate without morphology achieve competitive results with respect to the models
using morphological information. Figure 1.3 provides an overview of both the in- and
out-of-domain results obtained for both types of systems, confirming this trend. Thus, it
is remarkable that the XLM-RoBERTa model scores best out-of-domain for Turkish and
Czech, and a very close second in Russian. The results for Spanish and English deserve
further analysis, as the IXA pipes statistical models clearly outperform every other system
for these two languages, with the differences around 7 points in word accuracy.

Figure 1.4% presents the reversed results of those presented in Figure 1.3, namely,
the test set of the in-domain corpora becomes the out-of-domain test data while the
models are fine-tuned on the training split of the out-of-domain data. Doing this
experiment allows to discard that the out-of-domain behaviour exhibited in previous
results could be due to differences in size between the training in-domain data and
the testing out-of-domain test sets. Good examples of this are Russian and Spanish
for which SynTagRus and AnCora are used as in-domain data in the reversed setting.
These two datasets are much larger than the GSD corpora for those languages (used as
in-domain data in the original setting). Thus, results in the reversed setting demonstrate
that: (i) out-of-domain performance worsens substantially regardless of the language
and model, (i) language models fine-tuned without explicit morphological information
outperform in-domain every other model for all languages except Turkish, and (iii), the
out-of-domain results of XLM-RoBERTa-base are the best for Russian and Czech and
similar to other models in English and Spanish.

In any case, Figures 1.3 and 1.4 show that the results of every model significantly
degrade when evaluated out-of-domain, the most common application of lemmatizers.
Thus, even for high-scoring languages such as English and Spanish, out-of-domain
performance worsens between 3 and 5 points in word accuracy. For high-inflected
languages the differences are around 8 for Basque and more than 10 for Turkish.

SBasque is not present in this evaluation due to the fact that the Armiarma corpus does not include
UniMorph annotations.
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Russian Crech
N In-domain I OoD SynTagRus I In-domain B OoD PUD
100 1 97.86 98.76 98.87 99.07 99.25 99.01

100
96.70

97.08

96.55

ixa-mm ixa-gs morph flair mBERT xIm-r mono ixa-mm ixa-gs morph flair mBERT xlm-r mono
English Spanish
B In-domain s OoD GUM B In-domain B OoD AnCora
100 100
954 954
90+ 90 4
851 851
804 804
754 754
704 704
65 - -
ixa-mm ixa-gs morph flair mBERT xIm-r mono ixa-mm ixa-gs morph flair mBERT xim-r mono
Turkish Basque
B In-domain s OoD PUD B In-domain B OoD Armiarma
100 100

ixa-mm flair mBERT

ixa-gs

morph

xim-r

ixa-mm ixa-gs morph flair mBERT xIm-r

Figure 1.3: Overall in-domain and out-of-domain results.

23/71




Original Article - Rodrigo Agerri

Position: IDPTCL1-D00141-1

Russian
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100
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Figure 1.4: Overall in- and out-of-domain results in the reversed setting.
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1.6.3 Is Explicit Morphology Required?

Given that pre-trained language models such as XLM-RoBERTa-base can be leveraged
to learned competitive lemmatizers without using any explicit morphological signal, we
propose a final experiment to address the following two additional research questions.
First, will lemmatization results get closer to the state-of-the-art by using a larger
Transformer-based model such as XLM-RoBERTa-large? Second, can we improve the
performance of a language model such as XLM-RoBERTa by adding morphological
information during fine-tuning?

xlm-r-base xlm-r large

in-domain out-of-domain in-domain out-of-domain

without with without with without with without with

morph. morph. | morph. morph. | morph. morph. | morph. morph.

en 98.76 98.74 93.56 93.72 98.85 98.92 93.82 93.86
es 99.08 99.10 90.26 90.42 99.12 99.15 90.48 90.53
eu 9598 96.45 88.15 88.60 96.66 96.70 88.75 88.81
ru 97.08 97.25 90.53 90.92 97.63 97.96 91.60 91.71
cz 99.25 99.32 95.18 94.72 99.40 99.23 95.42 96.06
tr 95.38 95.19 84.90 85.34 96.30 96.13 85.18 85.40

Table 1.8: In- and out-of-domain results for XLM-RoBERTa-base and XLM-RoBERTa-large
models with and without morphological features during training.

Table 1.8 shows the results of experimenting with XLM-RoBERTa-base and
XLM-RoBERTa-large to learn lemmatization as a sequence labelling task with and
without adding morphology as explicit handcrafted features. For each language we pick
the best morphological configuration from Table 1.7 and encode the morphological
labels as feature embeddings. Both feature and encoded text embeddings are then sent
into a softmax layer for sequence labelling (Wang et al., 2022). The first observation is
that the large version of XLM-RoBERTa obtains the best results both in- and out-of
domain. It is particularly noteworthy that fine-tuning XLM-RoBERTa-large with only
the SES classes helps to outperform any other model for every language and evaluation
setting. Furthermore, adding morphology as a feature seems to be beneficial. In fact, the
morphologically informed models are the best in 4 out of 6 in-domain evaluations and
for all 6 out-of-domain cases.

We compute the McNemar test to establish whether the differences obtained with
and without morphological features are actually statistically significant. It turns out
that for XLM-RoBERTa-large results are rather mixed. Thus, only for Russian (p-value
0.003) and Czech (0.000) are the results significant at o = .05. For Turkish and Basque
the results are not conclusive (p-value 0.0495) while for the rest the null hypothesis
cannot be rejected (0.423 for Spanish, 0.242 in English and 0.547 in Basque). Regarding
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XLM-RoBERTa-base, in 4 out of 6 languages the results are statistically significant at
a = .01 (the McNemar test), failing to reject the null hypothesis for Russian and Turkish.

To sum up, our experiments empirically demonstrate that fine-grained morphological
information to train contextual lemmatizers does not lead to substantially better in- or
out-of-domain performance, not even for languages of varied complex morphology, such
as Basque, Czech, Russian and Turkish. Thus, only for Basque and Turkish did Morpheus
(using UPOS tags) outperformed XLM-RoBERTa models.

Taking this into account, and as previously hypothesized for other NLP tasks
(Manning et al., 2020), modern contextual word representations seem to implicitly
capture morphological information valuable to train lemmatizers without requiring any
explicit morphological signal. We have proved this by training off-the-shelf language
models to perform lemmatization as a token classification task obtaining state-of-the-art
results for Russian and Czech, and very close performance to UDPipe in the rest.
Finally, statistical models are only competitive to perform contextual lemmatization on
languages with a morphology on the simple side of the complexity spectrum, such as
English or Spanish.

Thus, the results indicate that XLM-RoBERTa-large is the optimal option to
learn lemmatization without any explicit morphological signal for every language and
evaluation setting.

1.7 Discussion

In this paper we performed a number of experiments to better understand the role
of morphological information to learn contextual lemmatization. Our findings can be
summarized as follows: (i) fine-grained morphological information does not help to
substantially improve contextual lemmatization, not even for high-inflected languages;
using UPOS tags seems to be enough for comparable performance; (ii) contextual
word representations such as those employed in Transformer and Flair models seem to
encode enough implicit morphological information to allow us to train good performing
lemmatizers without any explicit morphological signal; (iii) the best-performing
lemmatizers out-of-domain are those using either simple UPOS tags or no morphology
at all; (iv) evaluating lemmatization on word accuracy is not the best strategy; results
are too high and too similar to each other to be able to discriminate between models.
By using word accuracy we are assigning the same importance to cases in which the
lemma is equivalent to the word form (e.g. ‘the’) as to complex cases in which the word
form includes case, number and/or gender information (e.g, ‘medikuarenera’, which in
Basque means “to the doctor”, with its corresponding lemma ‘mediku’). We believe that
this may lead to a high overestimation in the evaluation of the lemmatizers.

In this section, we address some remaining open issues with the aim of understanding
better the main errors and difficulties still facing lemmatization. First, we discuss the
convenience of using an alternative metric to word accuracy. Second, we analyze the
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performance of XLM-RoBERTa-base by evaluating accuracy per SES. Third, we examine
the generalization capabilities of XLM-RoBERTa-base by computing word accuracy for
in-vocabulary and out-of-vocabulary words. We also discuss any issues regarding test data
contamination. Finally, we perform some error analysis on the out-of-domain performance
of the XLM-RoBERTa-base model for Spanish, to see why it is different to the rest of
the languages, as illustrated by Figure 1.3.

1.7.1 Sentence Accuracy

Looking at the in-domain results for lemmatization reported in the previous sections and
in the majority of recent work (Malaviya et al., 2019; McCarthy et al., 2019; Yildiz and
Tantug, 2019; Straka et al., 2019), with word accuracy in-domain scores around 96 or
higher, it is not surprising to wonder whether contextual lemmatization is a solved task.
However, if we look at the evaluation method a bit more closely, things are not as clear
as they seem. As it has been argued for POS tagging (Manning, 2011), word accuracy as
an evaluation measure is easy because you get many free points for punctuation marks
and for the many tokens that are not ambiguous with respect to its lemma, namely,
those cases in which the lemma and the word form are the same. Following this, a more
realistic metric might consist of looking at the rate of getting the whole sentence correctly
lemmatized, just as it was proposed for POS tagging (Manning, 2011).

Figure 1.5 reports the sentence accuracy of the six languages we used in our
experiments both for in- and out-of-domain. In contrast to the word accuracies reported
in Figure 1.3, we can see that the corresponding sentence accuracy results drop
significantly. In addition to demonstrating that lemmatizers have a large margin of
improvement, sentence accuracy allows us to better discriminate between different
models. We can see this phenomenon in the English and Spanish results. Thus, while
every model obtained very similar in-domain word accuracy in Spanish, using sentence
accuracy helps to discriminate between the statistical and the neural lemmatizers.
Furthermore, it also shows that among the neural models XLM-RoBERTa clearly
outperforms the rest of the models by almost 1 percent.

The effect of sentence accuracy for the in-domain evaluation is vastly magnified when
considering out-of-domain performance, with the extremely low scores across languages
providing further evidence of how far lemmatization remains from being solved.

1.7.2 Analyzing word accuracy per SES

The next natural step in our analysis is identifying which specific cases are most difficult
for lemmatizers. In order to do so, we look at the word accuracy for each of the SES
labels automatically induced from the data. In order to illustrate this point, we took
XLM-RoBERTa-base as an example use case and analyze their predictions for the
languages which could be inspected in-house, namely, Basque, English, Spanish and
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Russian Czech
1004 N In-domain BN OoD SynTagRus 100 BN In-domain s OcD PUD
90 1
80 1
704
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0
ixa-mm ixa-gs morph flair mBERT xlm-r mono ixa-mm ixa-gs morph flair mBERT

English Spanish
| W= In-domain s OoD GUM B In-domain s OoD AnCora
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ixa-mm ixa-gs morph flair T ixa-mm ixa-gs morph flair mBERT

Turkish Basque
| W= In-domain s OoD PUD

B In-domain B OoD Armiarma

0
ixa-mm ixa-gs morph flair mBERT xIm-r mono ixa-mm ixa-gs morph flair mBERT

Figure 1.5: Sentence accuracy results for in- and out-of-domain settings.
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‘ SES Casing ‘ Edit script W.acc % Examples
10;d}+ all low do nothing 99.29 76.87% | positive— positive
101L1;d+ 1st up do nothing 96.29 6.97% Martin— Martin
10;dj-+ all low remove last ch 98.58 5.52% | things—thing
J10;abe all low ignore form, use be 99.81 2.02% is—be
en | [0;d—+ all low remove 2 last ch 97.42 1.52% does—do
10;d—+ all low remove 3 last ch 96.45 1.10% trying—try
1ON-1;dH all up do nothing 94.22 0.68% | NASA—NASA
10;d—+bl+ all low first 2 char to b 99.33 0.59% | are—be
10;dj-+v+e+ | all low last ch to ve 100.00 0.51% has— have
10;dl—-e+ all low 3 last ch to e 96.23 0.42% driving— drive
10;di+ all low do nothing 99.36 | 72.40% | acuerdo—acuerdo
10;dj-+ all low del last ch 97.22 5.29% estrellass— estrella
10;d+ej-+ all low add e, del last ch 96.73 3.36% la—el
10;d}-+o0+ all low del last ch, add o 96.21 2.37% una—uno
es | |0;d+e—+ all low add e, del 2 last ch 99.78 2.13% los—el
10;d— all low del 2 last ch 97.36 1.40% flores— flor
10;aél all low ignore form, use €l 99.83 1.32% se— €l
10;dl+r+ all low add r 100.00 0.91% hace—hacer
10;d/+o+ all low add o 97.73 0.91% primer— primero
10;d-+a+r+ | all low del last ch, add ar 98.07 0.83% desarroll6— desarollar
10;di+ all low do nothing 99.16 57.80% | Ilerep6ypr— Ilemepbype
10;d-+ all low del last ch 97.67 6.97% IEPKOBBIO— UepKo8H
10;d-+a+ all low del last ch, add a 96.65 3.32% 9KOHOMHUKY — IKOHOMUKA
10;d}-+i+ all low del last ch, add 96.08 3.10% rOpOJICKOE— 20p0JCKOT
ru | |0;d—+ all low del 2 last ch 99.03 2.10% | cTpamamu— cmpara
10;d-+e+ all low del last ch, add e 98.04 2.07% MOPSI— MOPE
10;d-+a+ all low del last ch, add = 97.83 1.86% HCTOPUIO— UCTOPUA
10;d-+1+p+ | all low del last ch, add m» 98.88 1.81% TIOJLY TUIT— NOAYUUMN D
10;dj-+b+ all low del last ch, add » 93.94 1.67% CEHTAOPA— ceEHMAOPD
10;di—+r+5+ | all low del 2 last, add mo 98.10 1.60% OLLII— 6bIMb
10;d+ all low do nothing 99.05 | 49.63% | sartu—sartu
10;d—+ all low remove 2 last ch 97.72 9.93% librean— libre
10;d-+ all low remove last ch 96.27 6.54% korrikan—korrika
10;d—+ all low remove 3 last ch 93.24 3.60% aldaketarik— aldaketa
eu | T0l1;d+ 1st up do nothing 98.54 3.46% | MAPEI— Mapes
10;d—+ all low del 4 last ch 93.00 2.52% lagunaren—lagun
T L;d—+ 1st up del 2 last ch 95.54 1.88% | Egiptora— Egipto
10;d-+i+z all low del 1st ch, 100.00 1.38% da—izan
I4n+ add iz,n
1704 1;d-+ 1st up del last ch 90.08 1.10% Frantziak— Frantzia

Table 1.9: 10 most frequent SES, brief description, corresponding word accuracy, weight (in %)
in the corpus and examples of words and their lemmas for English, Spanish, Russian and Basque;
SES are computed following UDPipe’s method (Straka et al., 2019).
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Russian. Thus, Table 1.9 presents examples and results for the 10 most frequent SES for
each of these 4 languages development sets.

As we can see in Table 1.9, the most common lemma transformation to be learned
is based on the edit script “do nothing”, namely, the lemmatizer needs to learn that the
lemma and the word have the same form. It is also interesting to see how the ratio of
such lemma type changes across languages, from English, where such cases are observed
in almost 77% of the cases to Basque, where only half of the lemmas correspond to this
rule. However, in terms of word accuracy, the results are remarkably similar for all 4
languages, in the range of 99-99.30%. This demonstrates that the traditional evaluation
method greatly overestimates the lemmatizers’ performance.

By looking at other specific cases, we can see that in English problematic examples
to learn are those related to the casing of some characters (e.g. Martin — Martin, NASA
— NASA). Other noticeable issue refers to the verbs in gerund form (e.g. trying — try,
driving — drive).

With respect to Spanish interesting difficult lemmas are observed with articles in
feminine form (e.g. la — el, una — wuno), where the masculine form is considered the
canonical form or lemma, and feminine articles and adjectives should be lemmatized by
changing the gender of the word from female to male.

In Russian the most challenging case corresponds to the lemmatization of the nouns
that end with a soft sign b with the word accuracy for this SES as low as 93.94%. The
possible reason of such low accuracy could be the absence of a specific grammar rule
that defines the gender of such nouns and, therefore, the termination these nouns have in
different cases. The second lowest accuracy among the 10 most popular SES in Russian
is for adjectives, cases in which to obtain the lemma one should delete the last character
of the word and add a letter it (pronounced as iy kratkoe, short y), that in Russian
determines the suffix for some masculine nouns and adjectives in singular and nominative
case. The words could be in different cases and genders, so it is necessary to know such
information for correct lemmatization (e.g. ropojckoe — ropojckoit (neutral gender,
nominative case), cemeiinbiM — cemeitubiii (masculine gender, instrumental case)).

Finally, for Basque the most problematic cases with a rather low word accuracy of
only 90.08% can be found among the nouns in ergative (e.g. Frantziak — Frantzia)
or locative cases (e.g. Moskun (in Moscow) — Mosku, Katalunian (in Catalonia) —
Katalunia). The other two most difficult SES occur when the word forms are in possessive
case (e.g. lagunaren — lagun) and for nouns in indefinite form (e.g., aldaketarik (change)
— aldaketa).

It should be noted that an extra obstacle to improving some of these difficult cases is

the low number of samples available. Nonetheless, this analysis shows that lemmatizers
still do not properly learn to lemmatize relatively common word forms.
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1.7.3 Generalization Capabilities of Language Models

In this subsection we aim to analyze the generalization capabilities of a MLM such as
XLM-RoBERTa-base in the lemmatization task. More specifically, we will discuss two
issues: (i) whether MLMs simply memorize the SES lemma classes during fine-tuning
and (ii) whether the good performance of MLMs in this task might be due to some test
data contamination.”

In order to address the first point, we evaluate the performance of XLM-RoBERTa-base,
fine-tuned without morphological features, for those words seen during fine-tuning
(in-vocabulary words) with respect to out-of-vocabulary occurrences.

in-domain out-of-domain

in-vocabulary out-of-vocabulary | in-vocabulary out-of-vocabulary

en 99.20 90.60 95.25 81.11
es 99.23 93.71 92.69 59.36
eu 98.29 83.18 91.65 74.96
ru 99.29 90.39 95.04 79.07
cz 99.31 93.33 98.80 82.31
tr 98.96 84.55 94.37 68.59

Table 1.10: Word accuracy for in-vocabulary and out-of-vocabulary words for
XLM-RoBERTa-base model (original setting). Corpora: English - EWT (in-domain),
GUM (out-of-domain); Spanish - GSD (in-domain), AnCora (out-of-domain); Basque -
BDT (in-domain), Armiarma (out-of-domain); Russian - GSD (in-domain), SynTagRus
(out-of-domain); Czech - CAC (in-domain), PUD (out-of-domain); Turkish - IMST (in-domain),
PUD (out-of-domain).

in-domain ‘ out-of-domain

in-vocabulary out-of-vocabulary ‘ in-vocabulary out-of-vocabulary

en 98.57 89.15 93.95 76.48
es 99.34 93.28 92.12 49.21
ru 99.25 92.28 93.78 66.22
cz 98.17 83.58 96.31 81.28
tr 93.68 70.68 95.41 59.23

Table 1.11: Word accuracy for in-vocabulary and out-of-vocabulary words for
XLM-RoBERTa-base model (reversed setting).

Tables 1.10 and 1.11 report the results for both original and reversed settings and
in- and out-of-domain evaluations. It is noticeable that the model performs very well

"https://hitz-zentroa.github.io/lm-contamination/
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on out-of-vocabulary words, also in the out-of-domain evaluation, which would seem to
indicate that XLM-RoBERTa is generalizing beyond the words seen during training. This
seems to be confirmed also by looking at the Spanish and Russian results. It should be
remembered that, while in the reversed setting the training data for Spanish (AnCora,
500K tokens) and Russian (SynTagRus, 900K words) is much larger than in the original
setting (both GSD), the obtained results reflect roughly the same trend.

Finally, we should consider whether a MLM such as XLM-RoBERTa has already
seen the datasets we are experimenting with during pre-training, namely, whether
XLM-RoBERTa has been contaminated.® First, it should be noted that CC-100,
the corpus used to generate XLM-RoBERTa, was constructed by processing the
CommonCrawl snapshots from between January and December 2018. Second, the
SIGMORPHON data we are using was released in 2019° with the test data including
gold standard lemma and UniMorph annotations being released in April 2019. Third and
most importantly, XLM-RoBERTa does not see the lemmas themselves during training
or inference, but the SES classes we automatically generate in an ad-hoc manner for the
experimentation. The datasets containing both the words and the SES classes used have
not been yet made publicly available.

Based on this, it is possible to say that XLM-RoBERTa seems to generalize over
unseen words and that its performance is not justified by any form of language model
contamination.

1.7.4 Analyzing Spanish out-of-domain results

In Section 1.6.2 we saw that out-of-domain performance of Transformer-based models
for Spanish was not following the pattern of the rest of the languages. Instead, they
were 6-7% worse than the results obtained by the IXA pipes statistical lemmatizers
(iza-pipe-mm and iza-pipe-gs). By checking the most common error patterns of
XLM-RoBERTa-base, we found out that most of the performance loss was caused by
inconsistencies in the manual annotation of lemmas between the data used for in-domain
and out-of-domain evaluation. More specifically, the GSD Spanish corpus included in
UniMorph wrongly annotates lemmas for proper names such as Madrid, London or Paris
entirely in lowercase, namely, madrid, london and paris. However, the AnCora Spanish
corpus used for out-of-domain evaluation correctly annotates these cases specifying their
corresponding lemmas with the first character in uppercase. This inconsistency results
in 3781 examples of proper names in the AnCora test set which are all lemmatized
following the pattern seen during training with the GSD training set. Consequently,
the word accuracy obtained by the model for this type of examples in the AnCora test
set is 0%. In order to confirm this issue, we corrected the wrongly annotated proper
names in the GSD training data, fine-tuned again the model and saw the out-of-domain

Shttps://hitz-zentroa.github.io/lm-contamination/blog/
9First GitHub commit December 19, 2018.
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performance of XLM-RoBERTa-base go up from 90.26% to 96.75%, a more consistent
result with respect to the out-of-domain scores for the other 5 languages.

This issue manifests the importance of consistent manual annotation across corpora
from different domains in order to fairly evaluate out-of-domain performance of
contextual lemmatizers.

1.8 Concluding Remarks

Lemmatization remains an important Natural Language Processing task, especially for
languages with high-inflected morphology. In this paper we provide an in-depth study
on the role of morphological information to learn contextual lemmatizers. By taking
a language sample of varied morphological complexity, we have analyzed whether a
fine-grained morphological signal is indeed beneficial for contextual lemmatization.
Furthermore, and in contrast to previous work, we have also evaluated lemmatizers in
an out-of-domain setting, which constitutes, after all, their most common application
use. Our results empirically demonstrate that informing lemmatizers with fine-grained
morphological features during training is not that beneficial, not even for agglutinative
languages. In fact, modern contextual word representations seem to implicitly encode
enough morphological information to obtain good contextual lemmatizers without
seeing any explicit morphological signal. Finally, good out-of-domain performance can
be achieved using simple UPOS tags or without any explicit morphological signal.

Therefore, our results suggest that an optimal solution among all the options
considered would be to develop lemmatizers by fine-tuning a large MLM such
as XLM-RoBERTa-large without any explicit morphological signal. Addressing
lemmatization as a token classification task results in highly competitive and robust
lemmatizers with results over or close to the state-of-the-art obtained with much more
complex methods (Straka et al., 2019).

Furthermore, we have discussed current evaluation practices for lemmatization,
showing that using simple word accuracy is not adequate to clearly discriminate between
models, as it provides a deceptive view regarding the performance of lemmatizers. An
additional analysis looking at specific lemma classes (SES) has shown that many common
word forms are still not properly predicted. The conclusion is that lemmatization remains
a challenging task. Future work is therefore needed to improve out-of-domain results.
Furthermore, it is perhaps a good time to propose an alternative word-level metric to
evaluate lemmatization that, complemented with sentence accuracy, may provide a more
realistic view of the performance of contextual lemmatizers.
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CHAPTER 2

Shortest Edit Scripts Methods for Contextual
Lemmatization

This chapter is based on the following publication:

Olia Toporkov and Rodrigo Agerri (2024). Evaluating Shortest Edit Script Methods
for Contextual Lemmatization. In Joint International Conference on Computational
Linguistics, Language Resources and Evaluation (LREC-COLING 2024).

Abstract: Modern contextual lemmatizers often rely on automatically induced Shortest
Edit Scripts (SES), namely, the number of edit operations to transform a word form
into its lemma. In fact, different methods of computing SES have been proposed as an
integral component in the architecture of several state-of-the-art contextual lemmatizers
currently available. However, previous work has not investigated the direct impact of SES
in the final lemmatization performance. In this paper we address this issue by focusing
on lemmatization as a token classification task where the only input that the model
receives is the word-label pairs in context, where the labels correspond to previously
induced SES. Thus, by modifying in our lemmatization system only the SES labels that
the model needs to learn, we may then objectively conclude which SES representation
produces the best lemmatization results. We experiment with seven languages of
different morphological complexity, namely, English, Spanish, Basque, Russian, Czech,
Turkish and Polish, using multilingual and language-specific pre-trained masked
language encoder-only models as a backbone to build our lemmatizers. Comprehensive
experimental results, both in- and out-of-domain, indicate that computing the casing
and edit operations separately is beneficial overall, but much more clearly for languages
with high-inflected morphology. Notably, multilingual pre-trained language models
consistently outperform their language-specific counterparts in every evaluation setting.
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2.1 Introduction

Lemmatization is one of the most common basic Natural Language Processing (NLP)
tasks, commonly understood as transforming an inflected wordform (e.g., feeling,
felt) into its initial form known as lemma (e.g., feel), as defined by the contextual
lemmatization SIGMORPHON 2019 shared task (Aiken et al., 2019).

Lemmatization remains important for morphologically-rich languages as it usually
plays a crucial role for information extraction systems, sentiment analysis and helps to
deal with inflected named entities during named entity recognition task, especially for
high-inflected languages.

Nowadays, state-of-the-art approaches to lemmatization are based on supervised
contextual methods, a technique first proposed by Chrupala et al. (2008). Treating
lemmatization as a supervised classification task relies on automatically inducing a set
of patterns from textual corpora, encoding the minimum amount of edits needed to map
the surface word to its lemma, namely, the Shortest Edit Script (SES). Ideally these
SES would capture morphological patterns about word inflection making lemmatization
feasible as a classification task. Thus, in Chrupala’s approach, classifiers would learn
previously induced SES which, at inference time, would be decoded back into their
lemmas.

Modern contextual lemmatizers often rely on automatically induced Shortest Edit
Scripts (SES) for optimal performance. In fact, different methods of computing SES have
been proposed as an integral component in the architecture of several state-of-the-art
contextual lemmatizers currently available (Malaviya et al., 2019; Straka et al., 2019;
Yildiz and Tantug, 2019). However, previous work has not investigated the direct impact
of SES in the final lemmatization performance. In order to address this issue, in this paper
we compare three popular approaches to automatically induce SES (Straka et al., 2019;
Yildiz and Tantug, 2019; Agerri et al., 2014; Agerri and Rigau, 2016) and empirically
investigate which of them (if any) is the most beneficial.

In order to do so, we follow previous work by Toporkov and Agerri (2024) which
demonstrates that Masked Language Models (MLMs) can competitively perform
contextual lemmatization without receiving any explicit morphological signal during
training, using just the word form and its corresponding SES. This allows us to focus
on lemmatization as a token classification task where the only input that the model
receives is the word-label pairs in context, in other words, the labels corresponding to
previously induced SES. Thus, by modifying in our lemmatization systems only the SES
labels that the model needs to learn, we may then be able to objectively conclude which
SES representation helps to produce the best lemmatization results.

For our experiments we pick seven languages of different morphological complexity,
namely, English, Spanish, Basque, Russian, Czech, Turkish and Polish. Moreover, we use
a number of multilingual and language-specific pre-trained MLMs as backbone to build
our lemmatizers. To the best of our knowledge, this is the first systematic evaluation of
the impact of the SES representations for contextual lemmatization.

36/71



Original Article - Rodrigo Agerri Position: IDPTCL1-D00141-1

Comprehensive experimental results, both in- and out-of-domain, indicate that
computing the casing and edit operations separately, as proposed by UDPipe, is the
best method to obtain SES overall, particularly for the languages with more complex
morphology. Chrupala’s approach as implemented by Agerri et al. (2014) performs as a
close second, while the Morpheus method (Yildiz and Tantug, 2019) is the less optimal
one. In addition, our results show that multilingual MLMs consistently outperform
their language-specific counterparts in every evaluation setting. This is consistent with
previous research comparing monolingual and multilingual encoder-only models (Agerri
and Agirre, 2023). Furthermore, our experimental setting shows how to easily obtain
competitive lemmatization results for the languages of our choice.

Code, data and fine-tuned models are publicly available to facilitate further research
on this topic and reproducibility of the results.!

2.2 Related Work

Attempts to resolve the lemmatization task started with systems based on dictionary
lookup and/or finite set of rules (Karttunen et al., 1992; Oflazer, 1993; Alegria et al.,
1996; Segalovich, 2003; Carreras et al., 2004; Stroppa and Yvon, 2005). These systems,
apart from being language dependent, required a lot of effort, linguistic knowledge and
manual intervention, especially for more complex languages with a high level of inflection.
The creation of large annotated corpora, which included morpho-syntactic features and
lemmas, led to the development of machine learning approaches to lemmatization in a
variety of languages. Thus, initiatives such as the Universal Dependencies (Nivre et al.,
2017) and the UniMorph project (McCarthy et al., 2020) allowed to gather annotated
corpora in more than 118 languages, including low-resourced and endangered ones.

The hypothesis that context is beneficial in the case of unseen and ambiguous words
incentivized the appearance of supervised contextual lemmatizers. One of the pioneer
works in this field is the statistical contextual lemmatizer Morfette (Chrupala et al.,
2008). It is based on a pipeline approach and uses a Maximum Entropy classifier to predict
morphological tags and lemmas. Crucially, Chrupala et al. (2008) presents for the first
time the idea of treating lemmatization as a classification task by predicting the Shortest
Edit Script (SES), namely, the shortest sequence of instructions (insertions, deletions
or replacements) needed to transform a reversed inflected word to its lemma. The work
of Chrupala et al. (2008) inspired the development of many methods for contextual
lemmatization, which most of the time included the idea of using minimum edit scripts.
Among others, the IXA pipes system (Agerri et al., 2014; Agerri and Rigau, 2016) and
Lemming (Miiller et al., 2015) apply the same principle of edit trees, combining it with
the possibility of adding external lexical information. Other examples of the systems that
use the concept of SES are the works of Gesmundo and Samardzi¢ (2012), Chakrabarty
et al. (2017) and the system of Malaviya et al. (2019).

"https://github.com/hitz-zentroa/ses-lemma
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The development of supervised approaches involving deep learning algorithms and the
appearance of the Transformer architecture (Vaswani et al., 2017) and Transformer-based
MLMs such as BERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau et al., 2020)
allowed to significantly improve the performance of supervised lemmatizers. Thus, in
the SIGMORPHON 2019 shared task on contextual lemmatization (McCarthy et al.,
2019) most of the participating systems were based on MLMs. The best overall system
was UDPipe (Straka et al., 2019), which ensembled various pre-trained contextualized
BERT and Flair embeddings as an additional input to a Bi-LSTM network. To perform
lemmatization they classify the input words according to the set of generated lemma rules
or SES. The third best model, Morpheus, proposed a two-level LSTM network (Yildiz
and Tantug, 2019) which used vector-based representations of words, morphological tags
and SES as input. The output of the system results in a corresponding morphological
labels and SES representing the lemma class which is later decoded into its lemma form.

However, while many of these top performing systems included different methods to
compute SES as an integral component in their lemmatization models, there has not been
an attempt to compare and establish which of the existing methods is the optimal one
for the task. In this paper we pick three of the most popular SES approaches (according
to performance on the SIGMORPHON 2019 lemmatization benchmark) and make a
systematic comparison with the aim of clarifying this issue. We believe that this could
benefit the development of future lemmatizers which may include SES as an integral
component of their systems.

2.3 Data

To train and evaluate our models we used the datasets developed for the SIGMORPHON
2019 shared task on contextual lemmatization (McCarthy et al., 2019). These datasets
are annotated according to the Unimorph schema guidelines (McCarthy et al., 2020).
For in-domain evaluation we chose one corpus per language with standard train and
development partitions. Additionally, we also provide out-of-domain evaluation results,
as this is the setting in which lemmatizers are usually deployed. As most languages are
represented in the SIGMORPHON 2019 by more than one dataset, for out-of-domain
evaluation we picked the test sets of datasets different from the ones selected for in-domain

evaluation. The exception was Basque, for which we selected a dataset external to the
UniMorph SIGMORPHON data.

With respect to in-domain, in the case of Spanish and Russian we used GSD data,
which consists of Wikipedia and news articles, texts from blogs and reviews. As the
lemmas of these two corpora were originally lower-cased and giving the fact that the
methods of generating the Shortest Edit Scripts (SES) are case dependent (Toporkov and
Agerri, 2024), we performed a simple adjustment by changing the lemmas of the proper
nouns to their upper-cased version. For the rest of the languages, there was no need of
performing such adjustment, as the lemmas for the proper nouns in the corresponding
corpora were correctly upper-cased by default.
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For Polish we chose the LFG corpus (Przepiérkowski and Patejuk, 2018), derived
from a corpus of LFG (Lexical Functional Grammar) syntactic structures, and consisting
mostly of sentences from fiction, news and non-fiction genres, as well as the texts from
the Internet sources. For out-of-domain we used PUD.

The datasets for English, Basque, Turkish and Czech were the same as in the previous
paper, described in Section 1.3.2. Table 2.1 provides the details about the size of the
datasets used for training, development and evaluation, both in- and out-of-domain.

train ‘ dev ‘ test ‘test(OOD)

es 345545 42545 43,497 54,449
ru 79,980 9,526 9,874 109,855
en 204,857 24,470 25,527 8,189
eu 97,336 12,206 11,901 299,206
tr 46,417 5,708 5,734 1,795
cz 395,043 50,087 49,253 1,930
pl 104,730 13,161 13,076 8,511

Table 2.1: Number of tokens in the train, development, in-domain (test) and out-of-domain
(test(OOD)) test sets.

2.4 Methods to Induce Shortest Edit Scripts

The general idea of computing the Shortest Edit Script (SES) in contextual lemmatization
is based on finding the minimum number of edit operations necessary to convert a surface
word into its corresponding lemma. By edit operations we understand any change applied
to the wordform, which consists in deleting, inserting or replacing letters in the surface
word, as well as leaving the word unchanged in the case the inflected form and the lemma
coincide (e.g. the—the, road—road). SES methods focus on codifying such minimum
edits for their further application as a set of instructions to modify the surface word.
In this paper we address three different approaches based on the Shortest Edit Scripts.
The methods chosen are those implemented by the first and third best systems in the
SIGMORPHON 2019 shared task, namely UDPipe (Straka et al., 2019) and Morpheus
(Yildiz and Tantug, 2019), and Chrupala’s original proposal as implemented by the IXA
pipes system (Agerri et al., 2014; Agerri and Rigau, 2016). 2

2Tt may be argued that the methods of Morpheus and UDPipe systems do not strictly always generate
the shortest edit script (SES). However, we keep the SES term as it was originally coined by Chrupala
et al. (2008) as a convenient acronym.
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2.4.1 UDPipe

The approach applied in the UDPipe system focuses on performing character level
edits on the suffixes and prefixes of the word. They divide their script creation in two
parts: (i) encoding the correct casing as a casing script and (ii) creating a sequence of
character edits. Regarding the casing script, they consider both wordform and lemma
as lower-cased. If the lemma contains upper-cased characters they add a rule to the
casing script to uppercase such characters in the final lemma. The next step is creating
a sequence of character edits by splitting the wordform into a prefix, a root (stem) and
a suffix in order to process them separately. The root is obtained by finding the longest
equal substring between the input word and its lemma and is kept unchanged. Then
they process the prefixes and suffixes of the target word, including possible character
operations such as copy, add or delete. The final script is produced by a concatenation of
the casing and the edit scripts. The obtained SES are the complete rules which convert
input words to their lemmas. When the word and lemma do not share any common
parts, the word is considered irregular and is directly replaced by its lemma, skipping
any possible edits.

2.4.2 Morpheus

Morpheus’s approach is based on the prediction of minimum edits between a surface
word and its lemma using four fundamental operations such as same, delete, replace
and insert. Same and delete operations have only one version (the character may be
left without changes (s) or deleted (d)), while replace and insert operations may vary,
depending on the character they are tied to. As the minimum edit prediction decoder of
Morpheus creates edit labels for each character in the word, it is only able to generate
lemmas shorter or equal to the inflected forms. Still, in some languages lemmas may
be longer that their corresponding wordforms. For such cases Yildiz and Tantug (2019)
modify the standard Levenshtein distance algorithm by merging successive insert labels
into one in the same position with multiple characters. They perform the same process
for the replace label, combining it with the successive insert labels into one replace label
and ensuring the correct lemma generation. They also consider the cases where the word
is situated in the beginning of the sentence and should be lowercased, reflecting it in the
Shortest Edit Script.

2.4.3 IXA pipes

The third method is based on the interpretation of Chrupala’s technique (Chrupala et al.,
2008) by Agerri et al. (2014). This approach addresses the suffixal nature of inflectional
morphology where the end of the word is the most changing part and is more likely subject
to modifications than the prefix or root. Chrupala et al. (2008) propose to compute the
minimum edit distance between the reversed wordform and its lemma. They index word
characters starting from the end of the string, allowing to form more coherent lemma
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classes and to perform lemmatization more efficiently. In the set of instructions that are
generated using this technique the position of the letters that are subject to change are
indicated along with the type of operation (insertion or deletion). In the adaptation of
this approach it is also considered the casing of proper nouns, as well as the casing of the
words that appear in the beginning of the sentence and should be lowercased for their
correct lemmatization.

2.4.4 SES Comparison

In order to obtain a better understanding of the described methods and their core
differences, we provide a brief comparison of the three minimum edit approaches, namely,
UDPipe system’s approach (ses-udpipe), Morpheus’s approach (ses-morpheus) and IXA
pipes approach (ses-izapipes).

word—lemma | ses-udpipe | ses-ixapipes | ses-morpheus
cats—cat 10:d}- D0s s|s|s|d

birds— bird 10;d- DOs s|s|s|s|d
did—do 10;d—+o RlioD0d slr_old
Wolak— Wolak | 101}1;d 0 s|s|s|s|s
You—you 10:d; 1 1|s|s

Table 2.2: Examples of the three types of SES patterns: UDPipe - ses-udpipe, IXA pipes -
ses-ixapipes and Morpheus - ses-morpheus.

Table 2.2 provides some examples of the Shortest Edit Scripts used in lemmatization
for the aforementioned SES methods. For an action such as removing the last letter
of the surface word (as in the case of the words ‘cats’ and ‘birds’ ) both ses-udpipe
and ses-izapipes apply the edit instruction to the reversed wordform, removing the last
letter. Additionally, ses-udpipe method indicates that the word has to be lowercased. As
for ses-morpheus, it processes each letter separately, leaving those that should remain
untouched as ‘s’ (same) and deleting the last one, marking such operation with ‘d’
(delete). Unlike ses-udpipe and ses-izapipes, the scripts corresponding to the same action
of deleting the last word’s letter generate two different label classes as the number of the
letters in ‘cats’ and ‘birds’ is distinct.

The next lemmatization example (did—do), demonstrates how each of the SES
approaches treats the cases where one or more letters should be inserted in order to
obtain the lemma. Here ses-izapipes and ses-morpheus methods apply similar order of
minimum edits using delete and replace operations, while ses-udpipe first deletes the two
ultimate letters of the word and only then makes the insertion of the letter ‘o’.

Finally, the last two examples are provided in order to reflect the edit scripts that are
generated in the case of proper nouns in contrast to the ordinary nouns situated in the
beginning of the sentence and, therefore, starting with the capital letter. We could see
that for the proper noun ‘Wolak’ ses-udpipe indicates that the first letter should remain
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uppercased, whereas the scripts of ses-izapipes and ses-morpheus simply leave the word
unchanged. As for the pronoun ‘You’ situated in the beginning of the sentence, all three
SES approaches lowercase it in order to obtain the correct lemma. It is important to
mention that, as with the first two examples, in the case of the longer proper nouns
the UDPipe’s and IXA pipes’ scripts would remain the same, while the script of the
Morpheus’s approach would vary according to the number of letters in the surface word.

2.5 Systems

In our experiments we apply two multilingual and seven language-specific pre-trained
masked language models (MLMs). With respect to multilingual models we use
multilingual BERT (mBERT) (Devlin et al., 2019), a Transformer-based masked
language model pre-trained on the Wikipedias of 104 languages. mBERT was
pre-trained using both masking and next sentence prediction objectives, applying a
batch size of 256 and 512 sequence length for 1M steps. The second multilingual
model we apply is XLM-RoBERTa (Conneau et al., 2020), pre-trained on 2.5TB of
filtered CommonCrawl data for 100 languages. This model is based on the RoBERTa
architecture, was trained only on the MLM task, implies dynamic mask generation and
was pre-trained over 1.5M steps with a batch of 8192 and sequences of 512 length. We
used both base and large versions of XLM-RoBERTa.

Regarding the language-specific models, we choose one model for each of the target
languages. For Spanish we use the cased version of BETO (Canete et al., 2020). It is
a BERT-base language model trained on a large Spanish corpus including all Spanish
Wikipedia as well as the Spanish part of the OPUS project (Tiedemann, 2012) in a total
size of around 3 billion words. BETO is an upgraded version of the initial BERT-base
model with the application of the dynamic masking technique, introduced in RoBERTa.
It was trained with the total of 2M steps in two stages: 900K steps with a batch size of
2048 and maximum sequence length of 128, and the rest of the steps using batch size of
256 and maximum sequence length of 512.

For the Czech language we apply slavicBERT (Arkhipov et al., 2019), developed by
continuing the training of multilingual BERT on Russian news and the Wikipedias of
Russian, Bulgarian, Czech and Polish. The vocabulary of subword tokens was also rebuilt
with the use of the subword-nmt repository.?

For Russian we choose RuBERT (Kuratov and Arkhipov, 2019), which was
developed similarly to slavicBERT, with the difference of having only Russian as the
target language. The system was trained using the Russian Wikipedia and news. The
authors obtain a new subword vocabulary with longer Russian words and subwords from
subword-nmt.

In the case of English we train RoBERTa-base (Liu et al., 2019), an optimized version
of the BERT model. This model was obtained using more than 160GB of uncompressed

3https://github.com/rsennrich/subword-nmt/
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text, including, apart from the standard BERT datasets, the CC-news dataset with
English news articles published between January 2017 and December 2019.

For the Polish language we apply the base version of HerBERT (Mroczkowski
et al., 2021). This model is based on the original BERT architecture and achieves
state-of-the-art results on several downstream tasks, obtaining the best overall scores
for Polish language understanding on the KLEJ Benchmark. HerBERT was trained on
two datasets merged from six corpora such as NKJP, Wikipedia, Wolne Lektury, CCNet
and Open Subtitles. Its base version outperformed the base version of Polish RoBERTa
despite being trained with a smaller batch size (2560 vs 8000) and for a fewer number
of steps (50k vs 125k).

In the case of Turkish we use BERTurk.* It is a cased BERT-base model, trained
on 35GB of data, including Wikipedia, various OPUS corpora (Tiedemann, 2016), data
provided by Kemal Oflazer and the version of the Turkish OSCAR corpus (Ortiz Sudrez
et al., 2019) which was previously filtered and sentence segmented.

Finally, for Basque we use BERTeus (Agerri et al., 2020), a BERT-base model trained
on the BMC Basque corpus, which consists of news articles from online newspapers and
the Basque Wikipedia. The authors also perform the subword tokenization, which is
closer to linguistically interpretable strings in Basque. BERTeus outperforms mBERT and
XLM-RoBERTa in several NLP tasks including named entity recognition, POS tagging,
sentiment analysis and topic modelling.

2.6 Experimental Setup

In order to compare the three different approaches to generate the Shortest Edit Scripts
(SES) described in Section 2.4, we fine-tuned the multilingual and language-specific
pre-trained masked language models for each language in a token classification task,
where the labels to be predicted correspond to the automatically induced SES. The MLMs
were fine-tuned by adding a single linear classification layer on top. We performed a grid
search of hyperparameters to select the best batch size (8, 16), weight decay (0.01, 0.1),
learning rate (2e-5, 3e-5, 5e-5) and epochs (5, 10, 15, 20). We conduct both in-domain
and out-of-domain evaluation of the models. By out-of-domain evaluation we understand
evaluating on a data distribution different from the one that was used for training (in the
in-domain setting). For each type of SES we chose the best model on the development
set among the four MLMs in terms of word accuracy and loss. For all the languages
the highest accuracy was achieved using XLM-RoBERTa-large model, being the only
exception the ses-morpheus method in the case of Russian, where the best accuracy was
achieved using mBERT. Thus, every result reported in the next subsections is obtained
using XLM-RoBERTa-large as a backbone. Finally, apart from calculating word and
sentence accuracy scores, we also report the statistical significance across the three SES
methods using the McNemar test (Dietterich, 1998).

‘https://github.com/stefan-it/turkish-bert

43/71


https://github.com/stefan-it/turkish-bert

Original Article - Rodrigo Agerri Position: IDPTCL1-D00141-1

2.6.1 Results

Table 2.4 reports the best overall word accuracy results for in-domain and out-of-domain
settings. We can see that among the three SES types ses-morpheus is the least optimal.
Since its functioning principle implies that the same edit operation may generate various
labels depending on the word’s total number of characters (as demonstrated in Table
2.2 with the examples of the words ‘cats’ and ‘birds’), this approach creates the highest
amount of unique labels for 5 out of 7 languages of our survey (as illustrated by Table
2.3). This might be one of the possible reasons that leads to the lower performance of this
SES method, as in this case the range of the SES classes is wider, which could difficult
the learning and generalization processes of the model.

ses-udpipe | ses-ixapipes | ses-morpheus

es 444 670 1,213
ru 1,157 2,390 3,208
en 286 445 891
eu 2,247 5,324 3,710
tr 236 4,147 799
cz 1,020 2,345 3,033
pl 947 1,920 2,692

Table 2.3: The amount of unique labels for each SES type.

ses-udpipe ses-ixapipes ses-morpheus

IND OOD IND (0]0)D; IND OOD
es | 0.983 0.971 0.983 0.972* | 0.975 0.963
ru | 0.973  0.945*% | 0.970 0.941 0.927 0.885
en | 0.991 0.939 0.991 0.941 0.979 0.916
eu | 0.969% 0.890*% | 0.966 0.885 0.952 0.857
tr | 0.964* 0.853* | 0.915  0.827 0.938 0.804
cz | 0.994*% 0.947 0.991 0.951 0.987 0.924
pl | 0.982* 0.952 | 0.980 0.950 0.943 0.917

Table 2.4: Word accuracy results for the 3 SES types for in-domain (IND) and out-of-domain
(OOD) settings. In bold: best overall results across systems and SES types. *:results, that are
statistically significant at o = .05.

With respect to the other two methods, we could observe that for 5 out of 7
languages (namely, for Russian, Basque, Turkish, Czech and Polish) the highest word
accuracy in-domain is achieved using ses-udpipe approach (4 out of 5 of these results
are statistically significant). However, in the case of Spanish and English the results are
almost identical for both ses-udpipe and ses-izapipes methods. Regarding out-of-domain,
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‘ ses-udpipe ‘ ses-ixapipes ‘ses—morpheus

\ IND 00D \ IND O0OD \IND 00D

es | 0.703 0.489 0.708 0.505* | 0.582 0.397
ru | 0.614  0.426* | 0.604 0.401 0.314 0.187
en | 0.890 0.425 0.888 0.439 | 0.773 0.305
eu | 0.684 0.203* | 0.663 0.195 0.551 0.150
tr | 0.707* 0.080* | 0.496 0.010 0.583  0.050
cz | 0.896* 0.430 0.855 0.500 | 0.796 0.320
pl | 0.876* 0.656 | 0.861 0.657 0.675 0.519

Table 2.5: Sentence accuracy results for the 3 SES types for in-domain (IND) and out-of-domain
(OOD) settings. In bold: best overall results across systems and SES types. *:results, that are
statistically significant at o = .05.

in 4 out of 7 cases ses-udpipe is the optimal choice as well (3 statistically significant),
while ses-izapipes benefits the Czech language and performs similar to the UDPipe’s
method for English and Spanish.

Still, the differences in word accuracy results for ses-udpipe and ses-izapipes are very
small, which makes it difficult to distinguish between approaches. In order to obtain
a clearer picture in the methods’ performance we decided to additionally compute the
sentence accuracy metric as proposed for POS tagging by Manning (2011).

As demonstrated in Table 2.5, sentence accuracy allows us to better distinguish
between the models’ performance. First, it confirms the results regarding ses-morpheus
approach, achieving much lower accuracy for all the languages. Second, the almost
equivalent results in word accuracy for English and Spanish using both ses-udpipe
and ses-izapipes methods are now noticeably different when evaluated using sentence
accuracy. While in the case of Spanish the approach of IXA pipes seems to be more
beneficial both in-and out-of-domain, for English it allows to achieve 1.4 points better
in sentence accuracy out-of-domain. The same phenomenon can be observed in the case
of the Czech language, with 7 points better in sentence accuracy out-of-domain for
ses-izapipes method with respect to ses-udpipe. The results for the rest of the languages
follow the tendency obtained with the word accuracy metric, where the ses-udpipe
method scores the highest.

Although sentence accuracy results provide a clearer picture, we would like to
establish whether the differences are in fact statistically significant. Thus, we perform
the McNemar test to determine whether the scores obtained by ses-udpipe and
ses-izapipes are statistically significant or not (null hypothesis). When evaluating word
accuracy the test shows that the differences in performance of the two SES approaches
mentioned above are statistically significant (o« = .05) in ses-udpipe favor for the
agglutinative languages (Basque and Turkish) both in-domain (with p-value < 0.02 for
Basque and p-value < 0.001 for Turkish) and out-of-domain (with p-value < 0.001 for
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both Basque and Turkish); for Czech and Polish languages in-domain (p-value < 0.001
for Czech and p-value < 0.005 for Polish) and for Russian out-of-domain (p-value
< 0.001). Such small p-value results indicate that the differences in performance of
the models trained with different minimum edit approaches is noticeable. The test
results also suggest that in the case of lemmatizing using ses-izapipes method the model
commits a larger percentage of the errors respect to ses-udpipe. As for ses-ixapipes, the
results are statistically significant only for Spanish in the out-of-domain setting (p-value
< 0.002). For sentence accuracy the McNemar test results reflect the same tendency
as for word accuracy. Therefore, the McNemar test indicates that ses-udpipe approach
is more beneficial in the generation of the Shortest Edit Scripts that the other two
methods, at least in the proposed spectrum of languages.

2.7 Discussion

In order to make the comparison of the three Shortest Edit Script methods more complete
we discuss the following points. First, we analyze the performance of the pre-trained
masked language models on in-vocabulary and out-of vocabulary words. The aim of such
analysis is to understand which SES approach contributes better to the generalization
capabilities of the MLMs. Second, we conduct a brief error analysis in order to understand
what makes UDPipe’s method more successful that its two other counterparts. Finally,
we discuss model contamination issues.

Generalization on out-of-vocabulary words: Pre-trained masked language models,
in particular XLM-RoBERTa, demonstrate good generalization abilities and are capable
of achieving competitive results lemmatizing the words they did not see during the
training process (Toporkov and Agerri, 2024). In order to check which SES approach
benefits such capabilities more, we calculate word accuracy on in-vocabulary and
out-of-vocabulary words, comparing how the model performs on the words it has seen
during the training respect to the words it sees for the first time. Table 2.6 reports the
results.

Interestingly, all three SES approaches perform equally well on in-vocabulary words
in-domain and obtain very similar results out-of-domain. Things start changing when
we analyze the out-of-vocabulary performance. We can see the significant drop in the
generalization capability of the models using ses-morpheus approach, which confirms the
word and sentence accuracy results. We also could see that for Spanish, English and
Czech the results are better using ses-izapipes method, the point that reinforces the
sentence accuracy results. There is also a strong correlation between the results where
the differences between ses-udpipe and ses-izapipes are statistically significant and how
these approaches perform on unseen words.

In any case, from an overall perspective ses-udpipe demonstrates stronger
performance, achieving the highest accuracy in-domain for 5 out of 7 languages
and out-of-domain for 4 out of 7 languages both for in-vocabulary and out-of-vocabulary
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‘ ‘ ses-udpipe ‘ ses-ixapipes ‘ses—morpheus

| |INV. 00V |INV 00V |INV OO0V

o | md [ 0989 0906 | 0989 0912 |o0989 0316
ood | 0976 0904 | 0.977 0.917* | 0.975  0.807

| md | 0.995 0.908 0994 0900 [o0991 0741
ood | 0.972 0.878* | 0.972 0.865 | 0.967 0.636

. | md [ 0995 0.931 | 0901 0927|0993 0751
ood | 0.954 0833 | 0953 0.849 | 0954 0.631

o | ind [ 0990 0.852% | 0.990 032 | 0989 0748
ood | 0.926 0.777% | 0.926 0.757 | 0.926  0.645

| ind [ 0991 0.882% [ 0.991 0685 | 0992 0775
ood | 0.946 0.693* | 0.945 0.625 | 0944 0.564

| md | 0.098 0.955% | 0.998 0923 |0.998 0.876
ood | 0087 0807 | 0.988 0.821 | 0.987 0.703

| | ind | 0.098 0.919% [ 0.097 0909 |0992 0742
Pl ood | 0.981 0.816 | 0.981 0.808 | 0974  0.650

Table 2.6: Word accuracy for in-vocabulary (INV) and out-of-vocabulary (OOV) words for
in-domain (ind) and out-of-domain (ood) results. In bold: best results per SES and per language;
*.results, that are statistically significant at a = .05.

words. Table 7 in Appendix A provides more detailed results on out-of-vocabulary
statistics with respect to lemmas and SES. Thus, the overall better performance of
ses-udpipe is reinforced by having the lowest percentage rate of SES that have not
been seen during training. This data indicates that the ses-udpipe approach has better
generalization capabilities.

In conclusion, the results of our experiments show that the ses-udpipe method is
more beneficial for the lemmatization task, especially in the case of the languages with
more complex morphology. To analyze what makes this method better than its close
counterpart ses-izapipes, we conduct a brief error analysis in an attempt to identify the
most important factors that may influence performance.

Error Analysis: The first noticeable advantage that is perceived in the structure of
the ses-udpipe patterns is the absence of indexing. While ses-ixapipes misplaces some
indexes, wrongly annotating them to the letters that should be deleted or replaced,
ses-udpipe approach simplifies this process by only indicating the positions of the letters
that should be modified without having to map it with the corresponding index. Such
misplacements usually affect the complex words that need a lot of edit operations in
order to be lemmatized.
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Another important difference is how to deal with non-Latin alphabet and some
language-specific letters. In the cases of such languages as Russian and Turkish these
letters may cause a certain confusion during minimum edit generations as it happens to
ses-izapipes, which sometimes assigns to the final SES pattern the letters that do not
appear neither in the surface word, nor in the lemma.

The third interesting observation is encountered mostly in the lemmatization of
agglutinative languages (Basque and Turkish) and has to do with their suffixal nature.
Whereas the ses-udpipe method processes the parts of the words separately, ses-izapipes
does not take into account this issue. Thus, ses-izapipes focuses on indexing the correct
letters without considering if its the part of the suffix or of the root. As a result, this
approach may create an alternative minimum edit script, which may map correctly, but
that does not coincide with the gold standard SES. For example, when lemmatizing the
Basque word folklorearen (‘of folklore’, lemma folklore), the gold standard SES would be
D5rD4eD3aDO0n, while in one of the predictions ses-izapipes offered an alternative version
of SES, which is D4eD3aD2rDO0n. Applying both sets of edits will deliver the same result,
but as the goal of the classification task is to correctly assign the corresponding SES to
its surface word, such cases are considered incorrect. In order to check whether this could
be crucial in evaluating the overall SES performance, we calculate the total number of
occurrences where the SES distinct from the gold standard delivers the correct lemma
for the Basque language. Our results show that for ses-udpipe approach there are 9 out
of 11901 cases where an alternative SES leads to the same lemma (in-domain), while in
the case of ses-izapipes the number of such occurrences is 17 out of 11901 respectively.
This data indicates, that although such cases could appear, their influence on the overall
result is insignificant.

Finally, it also seems beneficial to encode the casing script as implemented in the
ses-udpipe method and which is only partially implemented in both ses-izapipes and
ses-morpheus approaches.

Regarding the other two minimum edit approaches, namely, ses-izapipes and
ses-morpheus, a brief error inspection shows that in the case of ses-izapipes most of
the errors are of suffixal and root nature, more precisely, in the incorrect indexing or
letter misplacement. Furthermore, the performance of ses-morpheus is mainly affected
by the large number of generated SES classes, which makes the classification task much
more difficult. The cases where lemma is longer than wordform, and, therefore the
edit operations are applied jointly, constitute between 5 and 15 of the total error rate
across the inspected languages, and is another source of possible low performance of this
method with respect to the other two.

2.8 Conclusion

In this paper, we present the first detailed systematic comparison of three popular
methods to compute Shortest Edit Scripts (SES), widely used in modern contextual
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lemmatization models. After a comprehensive battery of experiments with various
evaluation metrics and statistical tests, results indicate that ses-udpipe is the optimal
method for contextual lemmatization among the Shortest Edit Script approaches. Its
main advantages consist in: (i) computing casing and edit operations separately; (ii)
processing the wordform by morphemes and the absence of indexing, which allows to
avoid the cases where there are the same letters in the suffix and the root (especially for
agglutinative languages such as Basque and Turkish) and to create less ambiguous SES;
(iii) better generalization capabilities, that result in obtaining less out-of-vocabulary
SES and creating fewer SES labels, which benefits the models by having to learn a
smaller amount of SES classes. Furthermore, our results indicate the following: (i) more
metrics should be implemented in the analysis of the MLMs performance along with the
word accuracy; (ii) out-of-domain evaluation should be considered as an important step
as it allows to obtain a clearer picture of how far the task is solved.

We believe that the results of our study could be useful for the future development
of contextual lemmatizers which may include SES as an integral component of their
systems.
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CHAPTER 3

Future Work

In addition to the issues already raised in this paper, contextual lemmatization an
additional challenge, namely, the lack of annotation data for any domain and language
in order to avoid deploying contextual lemmatizer in out-of-domain settings.

As demonstrated by the empirical results obtained, contextual lemmatizers
substantially degrade when evaluated out-of-domain, their most common application
use-case. This means that obtaining optimal results would require to manually generate
annotated data for each application domain and language, an unfeasible task in terms
of monetary cost and human effort.

Cross-lingual Transfer for Cross-Domain Contextual Lemmatization:
Therefore, devising an alternative strategy to obtain good quality contextual lemmatizers
when no manually annotated data is available for a given specific domain and language
is paramount. Previous work has addressed this problem for other Natural Language
Processing tasks by proposing various crosslingual transfer techniques (Garcia-Ferrero
et al., 2022, 2023). The basic idea is to leverage available knowledge (annotations) for a
given language and domain (usually English) to automatically generate taggers for that
domain in different target languages (Agerri et al., 2018).

The emergence of multilingual language models (Devlin et al., 2019; Conneau et al.,
2020) allows for model-based crosslingual transfer. In the model-transfer approach a
language model fine-tuned in a given source language, typically English, can directly
be applied to other target languages. However, good results can also be obtained by
either machine translating the training data from English into the target languages or,
conversely, translating the test data from the target language into English (Hu et al.,
2020; Artetxe et al., 2023). In what can be called the data-transfer approach.

Data-transfer methods aim to automatically generate labelled data for a target
language. Previous works on data-transfer have proposed translation and annotation
projection as an effective technique for zero-resource cross-lingual sequence labelling (Jain
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It has great [sushi and even better service

Tiene un gran|sushi Y unservicio aun mejor

Figure 3.1: Illustration of the data-transfer method for Opinion Target Extraction (OTE).
Original figure from Garcia-Ferrero et al. (2022).

et al., 2019; Fei et al., 2020). In this setting, as illustrated by Figure 3.1 for the sequence
labelling task of Opinion Target Extraction, the idea is to translate gold-labelled text into
a target language and then, using automatic word alignments, project the labels from
the source into the target language. The result is an automatically generated dataset in
the target language that can be used for training a sequence labelling model (Yarowsky
et al., 2001; Ehrmann et al., 2011; Agerri et al., 2018; Garcia-Ferrero et al., 2022).

Despite crosslingual transfer (both model- and data-transfer) being successfully
applied in many sequence labelling tasks to mitigate the lack of annotated data for
a given language in a specific domain, this technique has not yet been applied to
lemmatization. As future work, we propose to study crosslingual transfer methods for
contextual lemmatization. Thus, instead of applying contextual lemmatizers trained
on Universal Dependencies or Unimorph across domains as it is now customary, the
idea would be to leverage lemma annotations in some specific language and domain
to apply crosslingual transfer into a target language for which we do not have any
manually annotated data. Therefore, by doing so we would be lemmatizing with a model
fine-tuned on domain-specific data which will hopefully lead to a increase in performance
with respect to the out-of-domain evaluation results reported in Section 1.6.2.

In any case, it should be noticed that it is not possible to directly apply model-transfer
and data-transfer techniques as formulated by previous work. Even though contextual
lemmatization can, as we have seen in this paper so far, be cast as a sequence labelling
or token classification task, previous work has focused on tasks such as Named Entity
Recognition, Opinion Target Extraction, Semantic Role Labelling or POS tagging. In
all these tasks, MLMs typically contextually learn to assign a label to a given token.
Furthermore, the relation between a label such as B-LOC or NOUN or TARGET and
the words they are assigned to is completely arbitrary in the sense that the label is not
generated based on the word form itself and it does not change across languages. Thus,
what models learn is that a given sequence of characters should be assigned a specific
label based on the context it occurs. Now, going back to Figure 3.1, in model-transfer
MLMs are fine-tuned in English and learn that the word ‘service’ is a TARGET and
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that, when applied to predict in Spanish, the word to which to attach the label learned
for ‘service’ corresponds, in Spanish, to ‘servicio’.

If we consider contextual lemmatization as presented in this paper it can easily be
seen that model-transfer will quickly run into difficulties as it would be learning Shortest
Edit Scripts (SES) induced from the word forms and lemmas themselves in English which
are then applied to a different language in which the SES induced from the corresponding
word forms and lemmas are going to be completely different. To cut a long story short,
lemma classes, unlike in NER, OTE or POS tagging, do change across languages because
they are induced by calculating the edit distance between a word form and its lemma.

With respect to data-transfer, the majority of previous published work on this line of
research explores the application of word-alignments (Ehrmann et al., 2011), projection
methods based on word-alignments have achieved mixed results as they often produce
partial, incorrect or missing annotation projections (Garcia-Ferrero et al., 2022). This is
due to the fact that word alignments are computed on a word-by-word basis leveraging
word co-occurrences or similarity between word vector representations. That is, without
taking into consideration the labeled spans or categories to be projected. Other techniques
have also been proposed, such as fine-tuning language models in the span projection task
(Li et al., 2021), translating the labeled spans independently from the sentence (Zhou
et al., 2022) or including markers during the machine translation step (Chen et al.,
2023). However, automatic annotation projection remains both an effective technique on
specialized domains (Yeginbergen and Agerri, 2024) and an open and difficult research
challenge.

Regarding data-transfer for contextual lemmatization, projecting the labels (SES) via
word alignments would be pairing a SES induced for a word form in the source language
with a completely different word form in the target language which, at decoding time,
will give us the completely wrong lemma. In order to solve this issue a possible strategy
could consist of: (i) projecting the lemma itself via word alignments; (ii) translating the
projected lemma to its corresponding lemma in the target language, and (iii) inducing
the SES between the translated lemma and the word form in the target language.

Step (ii) may be hindered by out-of-vocabulary issues if using dictionary-based
approaches to translate the lemmas, especially for non-standard language. Thus, this
step may need careful consideration and could involve experimenting with Machine
Translation (Costa-jussd et al., 2022) and/or decoder-based Large Language Models
(LLMs) to maximize the recall in the lemma translation process (Touvron et al., 2023;
Jiang et al., 2023).
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Appendix I: Morphology in Contextual Lemmatization

ixa-mm ixa-gs morph flair mBERT xlm-r mono base UDPipe

en 99.06 9895 98.10 98.58 = 98.56 98.76  98.49 97.68  99.01
es 9889 9874 99.02 99.02 99.01 99.08 99.04 9842 9931
ru  95.07 9322 96.30 96.18 96.70  97.08 96.55 95.67  97.77
eu 9341 9406 96.39 96.09 95.71 95.98 9551 96.07 97.14
cz 97.86 96.63 98.76 98.87  99.07  99.25 99.01 97.82  99.31
tr 85.52  86.57 96.18 9398  95.15 95.38 95.20 96.41  96.84

Table 1: Overall in-domain lemmatization results for models trained with and without explicit
morphological features; monolingual transformers: Russian - ruBERT, Czech - slavicBERT,
Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa-mm ixa-gs morph flair mBERT xlm-r mono

en 95.16 9513 9292 93.42 93.50 93.56  93.39
es 97.59 9745 90.35 90.29 90.27 90.26  90.34
ru  91.00 88.66 87.57 89.90 90.07 90.53 89.71
eu 8533 86.31 89.03 88.76 87.79 88.15 87.62
cz 9233 91.81 91.92 95.02 94.72 95.18 94.40
tr 80.33  80.50 84.74 83.51 84.40 84.90 84.46

Table 2: Overall out-of-domain lemmatization results for models with and without explicit
morphological features.
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ixa-mm ixa-gs morph flair mBERT xlm-r mono

en 88.27 8190 80.46 85.03 84.00 85.99 82.74
es 75.28  73.16 78.03 7834  T77.59 79.03 78.15
ru  45.73  33.40 55.27 5447  58.25 61.03 55.67
eu 4456 50.78 65.44 61.44  60.00 61.44 56.78
cz 69.45 56.17 81.10 83.21 84.99  87.62 83.69
tr 2890 35.82 69.68 59.75 64.18 64.54 64.36

Table 3: In-domain sentence accuracy results.

ixa-mm ixa~gs morph flair mBERT xlm-r mono

en 49.55 46.58 3545 37.73 39.55 42.27  37.73
es 52.38 50.17 2149 21.83 21.32 21.66 21.83
ru  26.87  21.26 22.69 27.03 27.18 28.26 26.64
eu 13.11 14.54 19.54 19.50 17.29 1791 1723
cz 29.00 25.00 36.00 48.00 40.00 47.00 45.00
tr 3.00 7.00 8.00 7.00 9.00 10.00 8.00

Table 4: Out-of-domain sentence accuracy results.

ixa-mm ixa-gs morph mBERT xlm-r mono base UDPipe

en 9756 97.12 97.78 97.19 9770 96.90 9741  98.63
es 98.70  98.53 98.98 99.14 99.19 99.23 98.54  99.46
ru 96.76  96.84 96.93 98.66  98.93 98.67 9592  98.92
cz  89.59  88.03 93.11 93.01 93.06 93.37 93.58  98.13
tr 77T 7833 87.02 83.40 85.07 8256 86.02  89.03

Table 5: Overall in-domain lemmatization results (reversed setting) for models with and without
explicit morphological features.
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ixa-mm ixa-gs morph mBERT xlm-r mono

en 91.22 90.55 88.97 90.80 91.21 90.94
es 87.90 8747 87.50 87.51 87.65 87.33
ru 8537  86.25 86.10 87.51 88.43 87.64
cz 86.09 8394 89.13 89.73  90.10 89.17
tr 70.61 70.95 81.03 77.01 78.22 76.87

Table 6: Overall out-of-domain lemmatization results (reversed setting) for models with and
without explicit morphological features.
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Appendix II: SES

Appendiz A. Detailed Out-of-Vocabulary Results

ses-udpipe ‘ ses-ixapipes ses-morpheus

oov oov oov oov lemmas  oov  oov lemmas oov oov lemmas

words lemmas ses  (ses in train) ses  (sesin train) ses  (ses in train)
ind 7.85 6.18 0.02 99.89 0.05 99.74 0.11 99.07
“ ood 765 593 0.28 96.41 0.43 98.27 0.28 97.86
ind 25.50 13.74 0.27 99.04 0.67 98.31 0.78 97.35
™ oood 2021 1536 1.65 96.23 2.45 95.03 2.52 94.33
ind 5.71 4.19 0.08 99.72 0.10 99.81 0.25 97.57
i ood 11.89 11.45 1.32 90.41 1.56 91.58 1.36 91.15
ind 15.28 5.07 0.61 96.52 1.45 94.86 0.92 94.69
. ood 24.26 11.99 1.13 95.98 2.49 94.68 1.45 94.78
tr ind 24.83 5.67 0.12 99.69 4.52 95.69 0.56 97.23
ood 36.71 20.72 0.45 97.85 6.52 91.40 3.40 97.85
ind 8.85 3.19 0.09 99.11 0.20 98.66 0.24 97.90
“ ood 21.97 11.76 2.33 99.12 2.59 99.12 2.90 98.24
ol ind 19.53 7.80 0.28 99.22 0.52 98.82 0.85 97.84
ood 17.65 8.72 0.40 98.65 0.62 97.57 0.67 97.57

Table 7: The proportion (in %) of out-of-vocabulary words, lemmas and SES in the in-domain
(ind) and out-of-domain (ood) test sets with respect to the train set, per language. In bold:

lowest percentage of out-of-vocabulary (oov) SES among the three SES types.

Table 7 reports the proportion of out-of-vocabulary (oov) words, lemmas and SES,
both for in-domain (ind) and out-of-domain (ood) settings for the three SES types.

By out-of-vocabulary we understand words, lemmas and SES in the test sets that the
system did not see during the training process. The column ‘oov lemmas (ses in train)’
refers to the proportion of lemmas that the model does not see during the training

(out-of-vocabulary lemmas) while their corresponding SES exist in the train set. In other
words, they have been seen by the system.
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