
On the Automatic Generation of Intermediate

Logic Forms for WordNet Glosses

Rodrigo Agerri1 and Anselmo Peñas2

1 Universidad Politécnica de Madrid (UPM),
Vicomtech Research Centre�

Donostia-San Sebastián, Spain
ragerri@vicomtech.org

2 NLP & IR Group UNED
Madrid, Spain

anselmo@lsi.uned.es

Abstract. This paper presents an automatically generated Intermedi-
ate Logic Form of WordNet’s glosses. Our proposed logic form includes
neo-Davidsonian reification in a simple and flat syntax close to natu-
ral language. We offer a comparison with other semantic representations
such as those provided by Hobbs and Extended WordNet. The Interme-
diate Logic Forms are straightforwardly obtained from the output of a
pipeline consisting of a part-of-speech tagger, a dependency parser and
our own Intermediate Logic Form generator (all freely available tools).
We apply the pipeline to the glosses of WordNet 3.0 to obtain a lexical
resource ready to be used as knowledge base or resource for a variety of
tasks involving some kind of semantic inference. We present a qualitative
evaluation of the resource and discuss its possible application in Natural
Language Understanding.

1 Introduction

Ongoing work on text understanding has made clear the need of readily available
knowledge and lexical resources that would help systems to perform tasks that
involve some type of semantic inference (e.g., [1,2,3]). For example, 21 of 26 teams
participating in PASCAL RTE-3 [4] used WordNet as a knowledge resource to
support reasoning. It has also been pointed out that we may need to develop
deep language understanding techniques if we are to consistently obtain very
high performance results in tasks such as RTE [5]. Some work has therefore
been done trying to improve the utility of WordNet (notably [6,7]) for semantic
inference, by augmenting it with syntactic analysis and logic formalisation of
its glosses. This paper reviews previous work aiming to identify those points
which could be improved. The result is the development of a new freely available
resource consisting of the generation of Intermediate Logic Forms (ILFs) for
WordNet 3.0 glosses: ILF-WN.1

� Currently at Vicomtech, http://www.vicomtech.org
1 Freely available to download at http://nlp.uned.es/semantics/ilf/ilf.html

A. Gelbukh (Ed.): CICLing 2010, LNCS 6008, pp. 26–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Automatic Generation of Intermediate Logic Forms 27

The ‘intermediate’ character of ILF comes from the fact that rather than gen-
erating a semantic representation in first-order logic (or other type of standard
logic), we provide a formal representation that aims to be as close as possible
to natural language by performing strict neo-Davidsonian reification [8,9] and
reducing to a minimum the syntax complexity. The objective is to provide a flat,
syntactically simple formal representation suitable to perform various types of
semantic inference (e.g., as in Recognizing Textual Entailment [1]), avoiding the
excessive brittleness caused by first-order approaches, as well as being able to
tackle difficult semantic problems such as co-reference, anaphora resolution, etc.

Our representation is based on two main predicates, one denoting the existence
of a discourse entity e(Id1,x1), and another to identify the existence of a direct
relation between two discourse entities rel(Id1,Id2,x1,x2). Both, entities and re-
lations are indexed to easily add semantic information related to the discourse
entities (e.g. lexical information: w(Id1,Word:Pos:Cat), syn(Id1,Synset-offset)),
but also to to the relations (e.g. syntactic dependency types dep(Id1,Id2,nsubj),
semantic roles, etc.) in a structure suitable to treat discourse-related problems.
For example, co-reference is denoted by the unification of variables in two dif-
ferent discourse entities (e.g. e(Id1,x1), e(Id3,x1)).

Next section discusses previous related work. Section 3 describes the main
characteristics of Intermediate Logic Forms. Section 4 describes the development
of ILF-WN. A qualitative comparison or evaluation with respect to previous
approaches to formalise WordNet’s glosses can be found in section 5 and section
6 concludes and points out to any future improvements to ILF-WN.

2 Previous Related Work

Our proposal, both the logic forms and the formalization of WordNet’s glosses is
inspired by neo-Davidsonian formalisms used in computational semantics such as
[10,11,12]. However, ILF-WN is a flat and simple syntax closer to the output of
dependency parsers. The syntax also contemplates that every relation between
words is a predicate instead of introducing first-order logical operators. Two
approaches have previously offered a logic form of WordNet’s glosses.

2.1 Extended WordNet

Extended WordNet 2.0-1.1 (XWN 2) provides a logical form and sense disam-
biguation for the glosses of WordNet 2.0 [13,6,12]. A very important feature of
XWN is the expansion of WordNet’s relations by taking into account the dis-
ambiguated info they extract from the glosses. This is something that current
version of ILF-WN does not offer. The overall procedure of building XWN 2
consists of pre-processing the glosses and perform syntactic parsing, logical form
transformation and word sense disambiguation (WSD) of adjectives, adverbs,
verbs and nouns. They use various methods to perform WSD on the glosses.
They disambiguate 64% words of WordNet glosses with 75% accuracy. The rest
of the words are tagged with the first sense.

28 R. Agerri and A. Peñas

The pre-processing of glosses aims to include the definiendum in the definiens
adding several other terms to make glosses more suitable for syntactic parsing.
For example, “the adjective glosses were extended with the adjective and ‘is
something’ in front of the gloss and a period at the end of it” [6]. Take the
adjective ‘bigheaded’: The gloss was transformed from (1) “used colloquially of
one who is overly conceited or arrogant; “a snotty little scion of a degenerate
family”-Laurent LeSage; “they’re snobs–stuck-up and uppity and persnickety”,
to (2) “bigheaded is something used colloquially of one who is overly conceited
or arrogant”. The pre-processed gloss is then parsed using Charniak’s parser [14]
and an in-house parser [6], and its result in a treebank form is included.

The parse results were classified into GOLD (parses manually checked), SIL-
VER (agreement between the two parsers without human intervention) and
NORMAL (disagreement between parsers, in-house parser is given priority) qual-
ities (but for formatting reasons, the last element of the tree should be indented
to the right of ‘VBZ is’).

The transformation to logical form [12] is inspired by the eventuality logic
proposed by Hobbs [10]. Depending of the part-of-speech of the synset, they use
a number of rules for the assignment of variables. In the case of adjectives, “the
first word representing the synset is taken and assigned the argument ‘x1’. In
the gloss of the synset on the right hand size, the argument ‘x1’ refers to the
same entity as the one described by the first word in the synset.”

The glosses are included in their original format in English whereas both the
parse (Example and logic form (Example 1) elements are performed on the pre-
processed versions of the glosses. Furthermore, in the original glosses synsets’
definitions, examples and other information is offered as a unit.

Example 1. Logic Form of “bigheaded.s.01” in XWN 2.
<lft quality="SILVER">

bigheaded:JJ(x1) -> use:VB(e1, x6, x1) colloquially:RB(e2)

of:IN(e1, e2) one:JJ(x3) be:VB(e2, x1) overly:RB(x4)

conceited:JJ(x4) arrogant:JJ(x4)

</lft>

Perhaps due to the glosses pre-processing, some parses result in overly complex
structures where in most cases the most important part of the gloss namely, the
definiens, is buried among a number of subordinating clauses with respect to
the phrase ‘overly conceited or arrogant’. This problem is fairly frequent for
long glosses (usually in nouns), and it seems to degrade the quality of the final
logic form. Leaving aside issues such the inclusion of the definiendum in the
definiens, we can see in example 1 that there are variables that do not belong
to anything (e.g., x6), and others that are left free (not related in any way with
the rest of the formula), such as overly:RB(x4) conceited:JJ(x4) arrogant:JJ(x4).
Other issues related to the absence of the coordinating disjunction ‘or’ in the
logic form and the assignment of the same variable x4 for ‘overly’, ‘conceited’ and

On the Automatic Generation of Intermediate Logic Forms 29

‘arrogant’, renders some glosses’ logic forms of XWN 2 difficult to understand
and use.

2.2 ISI/Boeing WN30lfs

A second project, WN30-lfs, consists of the logical forms for the glosses of Word-
Net 3.0, except where the parsing failed [7], in XML format, using eventuality
notation [10]. It was generated by USC/ISI [7,15]. Every synset is an element
consisting of the gloss (without examples, etc.) and its logical form. They pre-
processed the glosses to obtain sentences of the form “word is gloss”. They
parsed them using the Charniak parser [14], and the parse tree is then converted
into a logical form by a tool called LFToolkit, developed by Nishit Rathod. In
LFToolkit, lexical items are translated into logical clauses involving variables.
Finally, as syntactic relations are recognized, variables in the constituents are
unified [7]. Furthermore, predicates are assigned word senses using the WordNet
semantically annotated gloss corpus [16]. Example 2 shows the logical form for
the gloss of bigheaded.

Example 2. Logic Form in “bigheaded.s.01” in WN30-lfs.
<entry word="bigheaded#a#1" status="partial">

<gloss>used colloquially of one who is overly conceited or

arrogant</gloss>

<lf>bigheaded#a#1’(e0,x0) -> colloquially#r#1’(e5 ,e4) +

of’(e9,x11,x12) + one’(e11,x12) + excessively#r#1’(e8,e10)

+ conceited#a#1/arrogant#a#1’(e10,x10)</lf>

<sublf>conceited#a#1’(e10,x10) ->

conceited#a#1/arrogant#a#1’(e,x10)</sublf>

<sublf>arrogant#a#1’(e10,x10) ->

conceited#a#1/arrogant#a#1’(e,x10)</sublf>

</entry>

WN30-lfs also includes the sense to be defined in the definition (as in XWN
2) linked by a (seemingly) first-order conditional operator (see Example 2). Fur-
thermore, it is difficult to understand the fact that the logical forms of WN30-lfs
often contain free variables and/or predicates without any relation with any
other predicates in the definition. As in XWN 2, the predicates for the phrase
overly conceited or arrogant in Example 2 are left isolated from the rest of the
definition.

Summarizing, inspired by XWN 2 and WN30-lfs and acknowledging the many
merits of both XWN 2 and WN30-lfs, we believe that there is still some need for
providing lexical and/or knowledge resources suitable for computational seman-
tics tasks that required formalized knowledge. In particular, we aim at providing
a simple, clear and easy to use logical forms for WordNet’s glosses. We also aim
at making as transparent as possible the steps taken to obtain the logical forms

30 R. Agerri and A. Peñas

from the original glosses, and how this information can be offered in a XML
structured resource: ILF-WN (Intermediate Logic Form for WordNet glosses).

3 ILF Representation

Our representation consists mainly of two main predicates, one denoting the
existence of a discourse entity, and another establishing a direct relation between
two discourse entities. Entities and relations are indexed to easily add semantic
information related to the discourse entities. In the following subsections we
explain this representation in more detail.

3.1 Discourse Entities

Each word introduce a discourse referent denoted by a variable. This variable,
together with its index conform the predicate for discourse entities, e(Id,x). The
word itself is only a single piece of information associated to the discourse entity
among other information obtained during the linguistic processing (e.g. part of
speech, lemma, sense, offset in a ontology, similar words, etc). In ILF-WN, we
illustrate this with two predicates for lexical information: w(Id,Word:Pos:Cat),
syn(Id,Synset-offset) (the latter only for monosemous words).

It can be seen that indexes are important to link the lexical information
associated to a word with the role of that word in discourse, independently of
the variable unification that further reference resolution may produce. In this
sense, two discourse entities that denote the same referent will be expressed as
e(Id1,x),e(Id2,x). For example, consider the following text from TAC RTE 2009
testset:

The disappearance of York University chef Claudia Lawrence is now being
treated as suspected murder, North Yorkshire Police said. However detectives
said they had not found any proof that the 35-year-old, who went missing
on 18 March, was dead. Her father Peter Lawrence made a direct appeal
to his daughter to contact him five weeks after she disappeared. His plea
came at a news conference held shortly after a 10,000 reward was offered to
help find Miss Lawrence. Crimestoppers said the sum they were offering was
significantly higher than usual because of public interest in the case.

The pronouns that need to be resolved are highlighted. Using Lingpipe’s co-
reference system [17], we first identify ‘Claudia Lawrence’ as a named entity
of type PERSON in sentence 1, and then link the female pronoun ‘her’ in the
third sentence to ‘Claudia Lawrence’ in sentence 1 by assigning them the same
reference identifier (refid):

<coref system="Lingpipe 3.8.1">
<namedent="2" refid="1" s_id="1" type="PERSON" w_ind="6" />
<namedent="4" refid="1" s_id="3" type="FEMALE_PRO" w_ind="1" />
</coref>

On the Automatic Generation of Intermediate Logic Forms 31

The co-reference expressions are easily included in the ILFs:

w(1,6,‘Claudia Lawrence’,‘n’,‘nnp’) e(1,6,S1 6) w(3,1,‘she’,‘prp$’,‘prp$’)
s(3,1,S1 6)

When the pronoun ‘her’ (3,1) is resolved to a previous named entity (1,6),
then it gets assigned the same variable, namely, word 1 in sentence 3 (her) gets
the same discourse referent as word 6 in sentence 1 (Claudia Lawrence). This
applies to any subsequent pronouns that are linked to the same entity.

3.2 Relations between Discourse Entities

Strict Davidsonian reification allows us to greatly simplify the syntax of ILF. The
relations between entities are introduced by the dependencies obtained by the
dependency parser [18]. The predicate rel(Id1,Id2,x,y) captures this relation. The
pair Id1,Id2 indexes the relation, preserving the governor-dependent structure
of Id1 with respect to the entity associated to Id2. By assigning an index to
the relation, we can associate to it any information it might be required (e.g.
dependency type, preposition sense, type of noun-noun relation, etc.).

The representation of buy(x,y) become e(Id1,e), rel(Id1,id2,e,x), rel(Id1,id3,
e,y) in our notation. We can then add lexical information, dependency types
and semantic roles to the ILF: w(Id1, Buy), syn(Id1, Syn), dep(Id1,id2,nsubj),
dep(Id1,id3,dobj), srl(Id1,id2,Buyer), srl(Id1,id3,Bought).

In the current version of ILF-WN only the Stanford dependency types are
considered, and we include them in the rel predicate for simplicity.

4 ILFs for WordNet 3.0 Glosses

4.1 Processing Pipeline

We have assembled a pipeline consisting of a gloss preprocessing module, the
C&C tokenizer [19], part-of-speech CRFTagger [20], the Stanford dependency
parser [18], and our own ILF generator. ILFs are generated from the dependency
parser output adding extra semantic information (if available). The pipeline can
take a sentence or discourse in English as an input and automatically generate
its ILF. Each third-party tool included in the pipeline is used off-the-self.

Gloss pre-processing. A pre-processing of the glosses was performed in order
to obtain grammatically sound sentences more suitable for tokenization, part-
of-speech (POS) tagging and syntactic parsing. The pre-processing is loosely
inspired in [13]:

1. Text between brackets is removed. Text between brackets is usually an ex-
planation related to the use of the sense defined by the gloss. For example,
the gloss of the synset ‘bigheaded.s.01 ’ reads “(used colloquially) overly con-
ceited or arrogant.”

32 R. Agerri and A. Peñas

2. Everything after a semicolon is removed: Text after the semicolon is usually
a semi-structured phrase which does not add anything new to the definition
itself. For example, the synset ‘concrete.a.01 ’ is defined as “capable of being
perceived by the senses; not abstract or imaginary.”

3. According to POS category:
(a) For nouns and adverbs, we capitalize the first word and add a period at

the end. For example, the gloss of the noun ‘entity.n.01 ’ is “That which
is perceived or known or inferred to have its own distinct existence.”

(b) For the adjective glosses, ‘Something’ is added it the beginning and a
period at the end of the gloss. The gloss of ‘bigheaded.s.01 ’ mentioned
above now reads “Something overly conceited or arrogant.” whereas the
definition of ‘concrete.a.01 ’ has been transformed to “Something capable
of being perceived by the senses.”

(c) The verb glosses were modified by adding ‘To’ at the beginning of the
gloss and a period at the end. The definition of ‘swagger.v.03 ’ is trans-
formed from “act in an arrogant, overly self-assured, or conceited man-
ner” to “To act in an arrogant, overly self-assured, or conceited manner.”

Tokenization. The pre-processing performed on the glosses makes it easier
for tokenization. We use tokkie, the tokenizer offered by the C&C tools [21,19].
Tokenization is performed with removing quotes option on.

POS CRFTagger. After tokenization we use the CRFTagger, a Conditional
Random Field POS tagger for English [20]. The model was trained on sections
01-24 of Wall Street Journal (WSJ) corpus and using section 00 as the develop-
ment test set (accuracy of 97.00%) on the Penn Treebank [22]. Even though its
reported accuracy is similar to those of Stanford [23] and C&C tools [19] POS
taggers also trained on the Penn Treebank, we chose CRFTagger due to its speed
in processing large collections of documents.

Dependency parser. We feed the POS tagged glosses to the Stanford Parser
[24] in order to output a syntactic analysis consisting of Stanford typed depen-
dencies, which amount to a kind of grammatical relations between lemmatized
words acting as nodes of a dependency graph [18]. We take advantage of the
parser’s ability to output the dependency graphs in XML format for a better
integration in ILF-WN.

Generation of ILFs. We automatically generate Intermediate Logic Forms
from the typed dependencies output of the Stanford Parser, enriching its output
with any available lexical and semantic information.

4.2 Description of ILF-WN

Version 0.2 of ILF-WN consists a collection of validated XML documents dis-
tributed in two separate packages: (1) Four main files, one per part-of-speech;

On the Automatic Generation of Intermediate Logic Forms 33

(2) a set of files, one per synset, each file identified by its offset (a unique identifi-
cation number for each synset). Both formats contain the part-of-speech (POS),
syntactic and ILFs annotations for every gloss in WordNet 3.0.

ILF-WN provides a structured annotation of every gloss in terms of their
part-of-speech, syntactic analysis using a dependency parser, and the result of
transforming the syntax into an Intermediate Logic Form (ILF). Example 3,
which shows the structure of the synset bigheaded.s.01 in ILF-WN, will be used
to describe the resource in more detail.

Being a formalization of WordNet’s glosses, ILF-WN is structured in synsets,
namely, in senses expressed by a set of synonym words and a gloss. As shown
in Example 3 every <sense> element in ILF-WN has three attributes: A unique
numeric identifier or offset, its POS category in WordNet notation (‘a’ for adjec-
tives, ‘s’ for satellite adjectives, ‘r’ for adverbs, ‘v’ for verbs and ‘n’ for nouns),
and the synset name, which consists of a lemma, its POS category and the sense
number. In Example 3 the synset name is bigheaded.s.01, which translates to
‘the first sense of the satellite adjective bigheaded’. Decomposing the offset, the
first digit identifies the POS of the synset, followed by an eight digit number (in
the format of the Prolog version of WordNet 3.0 [25]). The first digit of nouns is
‘1’, verb is referred by ‘2’, both adjectives and satellite adjectives are collapsed
and start with ‘3’. Finally, adverbs’ offsets start with ‘4’.

Every <sense> element includes two required and one optional sub-elements:
<gloss>, <lemma> (at least one), and <examples> (zero or more). The lemma
elements contain the different lemmas of words by which a sense is expressed
in WordNet (they are considered synonyms). There might also be some exam-
ples of sentences including a use of a word expressing this particular sense. In
Example 3, ‘bigheaded’, ‘persnickety’, ‘snooty’, ‘snot-nosed’, ‘snotty’, ‘stuck-up’,
‘too big for one’s breeches’, and ‘uppish’, are the 7 lemmas of words that char-
acterize the sense glossed as “Something overly conceited or arrogant”. There
are also two examples conveying this sense by means of some of the synonym
words.

The linguistic annotation specific to ILF-WN is performed on the pre-
processed glosses’ definitions specified in the <text> element. After tokeniz-
ing, POS tagging and dependency parsing, the resulting annotation is placed
in the <parse> element in XML format. The dependency graph consists of the
POS tagged and lemmatized words of the gloss and the grammatical relations
between them. From the dependency graph an ILF is generated and placed in
the <ilf> element. For easier readability, we also provide a pretty print of ILF
in the <pretty-ilf> element.

5 Comparison with Other Approaches

ILF-WN bears a number of similarities with respect to both XWN 2 and WN30-
lfs as its aim, providing lexical knowledge to support semantic inference, fully
coincides with their purpose. However, ILF-WN offers a number of particularities
added in order to improve the final resource. Although our discussion is based

34 R. Agerri and A. Peñas

Example 3. Synset bigheaded.s.01 in ILF-WN.
<sense offset="301890382" pos="s" synset_name="bigheaded.s.01">
<gloss>

<text>Something overly conceited or arrogant.</text>
<parse parser="Stanford parser 1.6.1">

<s id="1">
<words pos="true">
<word ind="1" pos="NN">something</word>
<word ind="2" pos="RB">overly</word>
<word ind="3" pos="JJ">conceited</word>
<word ind="4" pos="CC">or</word>
<word ind="5" pos="JJ">arrogant</word>
<word ind="6" pos=".">.</word>

</words>
<dependencies style="typed">
<dep type="advmod">

<governor idx="3">conceited</governor>
<dependent idx="2">overly</dependent>

</dep>
<dep type="amod">

<governor idx="1">something</governor>
<dependent idx="3">conceited</dependent>

</dep>
<dep type="amod">

<governor idx="1">something</governor>
<dependent idx="5">arrogant</dependent>

</dep>
<dep type="conj_or">

<governor idx="3">conceited</governor>
<dependent idx="5">arrogant</dependent>

</dep>
</dependencies>

</s>
</parse>
<ilf version="0.2">[rel(1,3,2,‘advmod’,G1_3,G1_2),
rel(1,1,3,‘amod’,G1_1,G1_3), rel(1,1,5,‘amod’,G1_1,G1_5),
rel(1,3,5,‘conj_or’,G1_3,G1_5), e(1,2,G1_2),
w(1,2,‘overly’,‘r’,‘rb’), e(1,3,G1_3),
w(1,3,‘conceited’,‘a’,‘jj’), syn(1,3,301891773), e(1,1,G1_1),
w(1,1,’something’,‘n’,’nn’), e(1,5,G1_5),
w(1,5,‘arrogant’,‘a’,‘jj’), syn(1,5,301889819)]</ilf>
<pretty-ilf>something(x1) amod(x1,x3) amod(x1,x5) overly(x2)
conceited(x3) advmod(x3,x2) conj_or(x3,x5) arrogant(x5)
</pretty-ilf>

</gloss>
<lemma id="0">bigheaded</lemma>
<lemma id="1">persnickety</lemma>
<lemma id="2">snooty</lemma>
<lemma id="3">snot-nosed</lemma>
<lemma id="4">snotty</lemma>
<lemma id="5">stuck-up</lemma>
<lemma id="6">too_big_for_one’s_breeches</lemma>
<lemma id="7">uppish</lemma>
<example id="0">a snotty little scion of a degenerate family-
Laurent Le Sage</example>
<example id="1">they’re snobs--stuck-up and uppity and
persnickety</example>

</sense>

On the Automatic Generation of Intermediate Logic Forms 35

on specific examples, most of the points made here are in general applicable to
most of the logic forms of WordNet glosses.

First, pre-processing of glosses is a important step to ensure the quality of the
resource, specially to remove any redundant and superfluous information from
the glosses definitions. Comparing Examples 1 and 2 with 3, it is possible to
see that while in Examples 1 and 2 the most relevant concepts (overly conceited
or arrogant) were somewhat buried among other no so relevant information, in
Example 3 it is in a prominent position both in the <parse> and the <ilf>
elements.

Second, we have tried to simplify the generation of logical forms with respect
to XWN 2 and WN30-lfs, with the objective of avoiding free variables, predicates
not related to any other predicates, heterogeneity of the predicates arity, not
obvious decisions with respect to the treatment of disjunction, or including the
definiendum in the definiens.

A delicate issue related to logic forms is to decide the argument structure
of words, specially verbs with different meanings. In previous representations,
this must be specified, requiring some kind of mapping with other resources
such as FrameNet [26]. Our representation overcomes this problem by allowing
predicates to have its particular argument structure in each particular sentence.

An important feature of XWN 2 and WN30-lfs is the inclusion of word senses
in the logical form of glosses. However, in these representations is not possible to
consider the complete sense probability distribution of one word, or the different
senses coming from different source ontologies. Although we didn’t apply any
existing disambiguation method to the glosses, the ILF representation proposed
here allows to include word sense disambiguation adding the corresponding pred-
icates linked to the corresponding word indexes.

6 Conclusion and Future Work

This paper presents ILF-WN, a freely available XML-structured resource that
provides an Intermediate Logic Form for WordNet 3.0 glosses. We have compared
ILF-WN with Extended WordNet and WN30-lfs and, while being inspired by
them, we aimed to sort out a number of shortcoming presented in those projects.
We have also discuss the suitability of ILFs (and of ILF-WN) for the treatment
of semantic problems at discourse level.

However, there are several aspects on which ILF-WN has to improve, most
notably, on a procedure to include word sense disambiguation [27]. Furthermore,
co-reference and anaphora resolution seem to be particularly relevant for noun
synsets. For example, the ILF of the (pre-processed) gloss of blot.n.02, “An act
that brings discredit to the person who does it.”, would presumably benefit from
resolving the definite description ‘the person’ to ‘who’ and ‘it’ to ‘an act’.

ILF-WN could be quantitatively evaluated following the procedure of Task 16
SemEval-2007, for the Evaluation of wide coverage knowledge resources [28]. In
this sense it would be similar to the evaluation provided for eXtended Wordnet in
[29] where they evaluated XWN’s capability of disambiguating words contained
in the glosses as reported in section 2.1.

36 R. Agerri and A. Peñas

We believe that as we improve ILF-WN towards version 1.0, we will be able
to offer both intrinsic (perhaps based on WSD) and extrinsic (based on a task
such as RTE [1]) evaluations of the resource.

Acknowledgments

This work has been supported by Madrid R+D Regional Plan, MAVIR Project,
S-0505/TIC/000267. (http://www.mavir.net) and by the Spanish Government
through the ”Programa Nacional de Movilidad de Recursos Humanos del Plan
Nacional de I+D+i 2008-2011 (Grant PR2009-0020).

References

1. Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entail-
ment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc,
F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg
(2006)

2. Clark, P., Murray, W., Thompson, J., Harrison, P., Hobbs, J., Fellbaum, C.: On
the role of lexical and world knowledge in RTE3. In: Proceedings of the Workshop
on Textual Entailment and Paraphrasing, ACL 2007, Prague, pp. 54–59 (2007)

3. Bos, J., Markert, K.: Recognizing textual entailment with robust logical inference.
In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW
2005. LNCS (LNAI), vol. 3944, pp. 404–426. Springer, Heidelberg (2006)

4. Giampiccolo, D., Magnini, B., Dagan, I., Dollan, B.: The Third PASCAL Recog-
nizing Textual Entailment Challenge. In: Proceedings of the Workshop on Textual
Entailment and Paraphrasing, Association for Computational Linguistics (ACL
2007), Prague, pp. 1–9 (2007)

5. MacCartney, B., Manning, C.: Modeling semantic containment and exclusion in
natural language inference. In: Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), Manchester, UK, pp. 521–528 (2008)

6. Harabagiu, S.M., Miller, G.A., Moldovan, D.I.: eXtended WordNet - A Morphologi-
cally and Semantically Enhanced Resource (2003), http://xwn.hlt.utdallas.edu

7. Clark, P., Fellbaum, C., Hobbs, J.R., Harrison, P., Murray, W.R., Thompson, J.:
Augmenting WordNet for Deep Understanding of Text. In: Bos, J., Delmonte, R.
(eds.) Semantics in Text Processing. STEP 2008 Conference Proceedings. Research
in Computational Semantics, vol. 1, pp. 45–57. College Publications (2008)

8. Davidson, D.: Essays on Actions and Events. Oxford University Press, Oxford
(1980)

9. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Modeltheoretic se-
mantics of natural language, formal language and Discourse Representation The-
ory. Kluwer Academic Publishers, Dordrecht (1993)

10. Hobbs, J.: Ontological promiscuity. In: Annual Meeting of the ACL, Chicago, pp.
61–69 (1985)

11. Bos, J.: Computational semantics in discourse: Underspecification, resolution, in-
ference. Journal of Logic, Language and Information 13, 139–157 (2004)

12. Rus, V.: Logic Form for WordNet Glosses and Application to Question Answer-
ing. PhD thesis, Computer Science Department, School of Engineering, Southern
Methodist University, Dallas, Texas (2002)

http://xwn.hlt.utdallas.edu

On the Automatic Generation of Intermediate Logic Forms 37

13. Moldovan, D., Rus, V.: Explaining Answers with Extended WordNet. In: Proceed-
ings of the Association for Computational Linguistics, ACL 2001 (2001)

14. Charniak, E.: A Maximum-Entropy-Inspired Parser. In: Procedings of the North
American Association for Computational Linguistics, NAACL (2000)

15. Information Science Institute, University of Southern California: Logical Forms for
WordNet 3.0 glosses (2007),
http://wordnetcode.princeton.edu/standoff-files/wn30-lfs.zip

16. WordNet Gloss Disambiguation Project, Princeton University: Semantically anno-
tated gloss corpus (2008), http://wordnet.princeton.edu/glosstag.shtml

17. Alias-i: Lingpipe 3.8.2 (2008), http://alias-i.com/lingpipe
18. de Marneffe, M.C., MacCartney, B., Manning, C.: Generating typed dependency

parses from phrase structure parses. In: Proceedings of Language Resources and
Evaluation Conference, LREC (2006)

19. Clark, S., Curran, J.: C&C tools (v1.0),
http://svn.ask.it.usyd.edu.au/trac/candc

20. Phan, X.H.: CRFTagger: CRF English POS Tagger (2006),
http://sourceforge.net/projects/crftagger

21. Clark, S., Curran, J.: Wide-coverage efficient statistical parsing with CCG and
Log-Linear Models. Computational Linguistics 33, 493–553 (2007)

22. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a Large Annotation
Corpus of English: The Penn Treebank. Computational Linguistics 19, 313–330
(1993)

23. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. In: Proceedings of HLT-NAACL, pp.
252–259 (2003)

24. The Stanford Natural Language Processing Group: The Stanford Parser: A statis-
tical parser, http://nlp.stanford.edu/software/lex-parser.shtml

25. Prolog Version of WordNet 3.0 (2008),
http://wordnetcode.princeton.edu/3.0/wnprolog-3.0.tar.gz

26. Ruppenhofer, J., Ellsworth, M., Petruck, M., Johnson, C., Sheffczyk, J.: Framenet
ii: Extended theory and practice (2006),
http://framenet.icsi.berkeley.edu/book/book.html

27. Agirre, E., Soroa, A.: Personalizing pagerank for word sense disambiguation. In:
Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics (EACL 2009), Athens, Greece (2009)

28. Cuadros, M., Rigau, G.: Semeval-2007 task 16: Evaluation of wide coverage knowl-
edge resources. In: Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval 2007), Prague, Czech Republic, pp. 81–86. Association for
Computational Linguistics (2007)

29. Harabagiu, S., Miller, G., Moldovan, D.: Wordnet 2 - a morphologically and se-
mantic enhanced resource. In: Proceedings of SIGLEX (1999)

http://wordnetcode.princeton.edu/standoff-files/wn30-lfs.zip
http://wordnet.princeton.edu/glosstag.shtml
http://alias-i.com/lingpipe
http://svn.ask.it.usyd.edu.au/trac/candc
http://sourceforge.net/projects/crftagger
http://nlp.stanford.edu/software/lex-parser.shtml
http://wordnetcode.princeton.edu/3.0/wnprolog-3.0.tar.gz
http://framenet.icsi.berkeley.edu/book/book.html

	On the Automatic Generation of Intermediate Logic Forms for WordNet Glosses
	Introduction
	Previous Related Work
	Extended WordNet
	ISI/Boeing WN30lfs

	ILF Representation
	Discourse Entities
	Relations between Discourse Entities

	ILFs for WordNet 3.0 Glosses
	Processing Pipeline
	Description of ILF-WN

	Comparison with Other Approaches
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

