
Knowledge-Based Systems 79 (2015) 36–42
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Big data for Natural Language Processing: A streaming approach
http://dx.doi.org/10.1016/j.knosys.2014.11.007
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: rodrigo.agerri@ehu.es (R. Agerri), xabier.artola@ehu.es

(X. Artola), zuhaitz.beloki@ehu.es (Z. Beloki), german.rigau@ehu.es (G. Rigau),
a.soroa@ehu.es (A. Soroa). 1 http://www.newsreader-project.eu/.
Rodrigo Agerri ⇑, Xabier Artola, Zuhaitz Beloki, German Rigau, Aitor Soroa
IXA NLP Group, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
a r t i c l e i n f o

Article history:
Received 30 March 2014
Received in revised form 22 October 2014
Accepted 8 November 2014
Available online 20 November 2014

Keywords:
Natural Language Processing
Distributed NLP architectures
Big data
Storm
NLP tools
a b s t r a c t

Requirements in computational power have grown dramatically in recent years. This is also the case in
many language processing tasks, due to the overwhelming and ever increasing amount of textual infor-
mation that must be processed in a reasonable time frame. This scenario has led to a paradigm shift in the
computing architectures and large-scale data processing strategies used in the Natural Language Process-
ing field. In this paper we present a new distributed architecture and technology for scaling up text anal-
ysis running a complete chain of linguistic processors on several virtual machines. Furthermore, we also
describe a series of experiments carried out with the goal of analyzing the scaling capabilities of the lan-
guage processing pipeline used in this setting. We explore the use of Storm in a new approach for scalable
distributed language processing across multiple machines and evaluate its effectiveness and efficiency
when processing documents on a medium and large scale. The experiments have shown that there is a
big room for improvement regarding language processing performance when adopting parallel architec-
tures, and that we might expect even better results with the use of large clusters with many processing
nodes.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Professionals in any sector need to have access to accurate and
complete knowledge to be able to take well-informed decisions.
This is getting more and more difficult due to the sheer size of data
they need to process. This also means that the knowledge and
information of professionals is quickly getting out of date. How-
ever, their decisions have an even bigger impact in today’s
highly-interconnected world. Thus, professional decision-makers
are involved in a constant race to stay informed and to respond
adequately to any changes, developments and news. However,
the volume of news and documents provided by major information
brokers has reached a level where state-of-the-art tools are no
longer adequate to provide a solution.

Processing huge amounts of textual data has become a major
challenge in the Natural Language Processing (NLP) research area.
As the majority of digital information is present in the form of
unstructured data such as web pages or news articles, NLP tasks
such as cross-document coreference resolution, event detection
or calculating textual similarities often require processing millions
of documents in a timely manner. For example, the main goal of
the Newsreader project1 is to perform multilingual real-time event
detection and extract from text what happened to whom, when and
where, removing duplication, complementing information, register-
ing inconsistencies and keeping track of the original sources. The
project foresees an estimated flow of 2 million news items per day
and the complex linguistic analysis of those documents needs to
be done in a reasonable time frame (one or few hours). Therefore,
the project faces an important challenge with respect to the scalabil-
ity of the text processing.

This overwhelming flow of textual data calls for a paradigm
shift in the computing architecture and large scale data processing.
For instance, Singh et al. [27] process a corpus comprising news
articles published during the last 20 years. McCreadie et al. [20]
present a distributed framework for event detection that is capable
of effectively processing thousands of twitter posts every second.
These challenges fall into a new class of the so called ‘‘Big Data’’
tasks, requiring large scale and intensive processing which have
to be able to efficiently scale up to huge amounts of data
[23,27,20].

This paper presents a new distributed architecture and technol-
ogy for scaling up text analysis to keep pace with the rate of cur-
rent growth of news streams and collections. We designed and
deployed a complete chain of NLP modules within virtual
machines (VMs). We also present the twelve NLP modules included

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.11.007&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.11.007
mailto: rodrigo.agerri@ehu.es
mailto: xabier.artola@ehu.es
mailto: zuhaitz.beloki@ehu.es
mailto: german.rigau@ehu.es
mailto: a.soroa@ehu.es
http://www.newsreader-project.eu/
http://dx.doi.org/10.1016/j.knosys.2014.11.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42 37
into the virtual machines, of which a subset, the IXA pipes tools,
are the ones used to do most of the experimentation [1].2 We also
provide empirical performance results when applied to realistic vol-
umes of news within hard time constraints.

The rest of the paper is organized as follows. Section 2 presents
and discusses alternative big data frameworks. Section 3 presents
the text analysis modules of the English and Spanish pipelines. Sec-
tion 4 describes the distributed architecture and deployed solution
for massive processing of streams of texts. Section 5 describes the
experiments carried out to evaluate the performance of the pro-
posed solution. Finally, in Section 6 we discuss some concluding
remarks and planned future research work.
2. Big data frameworks

Processing massive quantities of data requires designing solu-
tions that are able to run distributed programs across a large clus-
ter of machines [30]. Besides, issues such as parallelization,
distribution of data, synchronization between nodes, load balanc-
ing and fault tolerance are of paramount importance. Apache
Hadoop3 is a framework designed to perform large scale computa-
tions that is able to scale to thousands of nodes in a fault-tolerant
manner. It is probably the most widely used framework for large
scale processing on clusters of commodity hardware. Hadoop imple-
ments MapReduce, a programming model for developing parallel and
distributed algorithms that process and generates large data sets.
Hadoop is the basis for a large number of other specific processing
solutions such as Mahout4 for machine learning or Giraph5 for graph
processing, to name but a few.

One of the main problems of using the Hadoop framework is
that it requires casting any computation as a MapReduce job. In
the case of the NLP pipeline presented in this work, these solutions
would require a complete reimplementation of each NLP module,
which is clearly impractical. Apache SPARK [31] overcomes this
problem by extending Hadoop with new workloads like streaming,
interactive queries and learning algorithms.

Hadoop follows a batch processing model, where computations
start and end within a given time frame. In a streaming computing
scenario [8], however, the processing is open-ended. Thus, the pro-
gram is designed to process documents forever while maintaining
high levels of data throughput and a low level of response latency.

Storm6 is an open source, general-purpose, distributed, scalable
and partially fault-tolerant platform for developing and running dis-
tributed programs that process continuous streams of data. Storm is
agnostic with respect to the programming model or language of the
underlying modules, and, thus, it is able to integrate third party tools
into the framework.

The main abstraction structure of Storm is the topology, a top
level abstraction which describes the processing node that each
message passes through. The topology is represented as a graph
where nodes are processing components, while edges represent
the messages sent between them. Topology nodes fall into two cat-
egories: the so called spout and bolt nodes. Spout nodes are the
entry points of a topology and the source of the initial messages
to be processed. Bolt nodes are the actual processing units, which
receive incoming text, process it, and pass it to the next stage in
the topology. There can be several instances of a node in the topol-
ogy, thus allowing actual parallel processing.

The data model of Storm is a tuple, namely, each bolt node in the
topology consumes and produces tuples. The tuple abstraction is
2 http://ixa2.si.ehu.es/ixa-pipes.
3 http://hadoop.apache.org/.
4 https://mahout.apache.org/.
5 http://giraph.apache.org/.
6 http://storm.incubator.apache.org/.
general enough to allow any data to be passed around the
topology.

In Storm, each node of the topology may reside on a different
physical machine; the Storm controller (called Nimbus) is the
responsible of distributing the tuples among the different
machines, and of guaranteeing that each message traverses all
the nodes in the topology. Furthermore, Nimbus performs auto-
matic re-balancing to compensate the processing load between
the nodes.

Section 4 describes our solution to big data processing using vir-
tualization, Apache Storm and a set of NLP tools organized in a
data-centric architecture. The description of such NLP tools is the
subject of the next section.
3. NLP pipeline

Many Natural Language Processing (NLP) applications demand
some basic linguistic processing (Tokenization, Part of Speech
(POS) tagging, Named Entity Recognition and Classification (NERC),
Syntactic Parsing, Coreference Resolution, etc.) to be able to further
undertake more complex tasks. Generally, NLP annotation is
required to be as accurate and efficient as possible and existing
tools, quite rightly, have mostly focused on performance. However,
this generally means that NLP suites and tools usually require
researchers to perform complex compilation/installation/configu-
ration procedures in order to use such tools. At the same time, in
the industry, there are currently many Small and Medium Enter-
prises (SMEs) offering services that one way or another depend
on NLP annotations.

In both cases, in research and industry, acquiring, deploying or
developing such base qualifying technologies is an expensive
undertaking that redirects their original central focus. In research,
much time is spent in the preliminaries of a particular research
experiment trying to obtain the required basic linguistic annota-
tion, whereas in an industrial environment SMEs see their already
limited resources taken away from offering products and services
that the market demands. In order to address this issue, we have
developed a set of NLP tools which we refer to as the IXA pipes
tools [1].7 The IXA pipes tools consist of ready to use modules to per-
form efficient and accurate linguistic annotation while allowing
users to focus on their original, central task.
3.1. IXA pipes

The aim of the IXA pipes tools is to provide multilingual NLP
tools that are simple and ready to use, portable, modular, efficient,
accurate and distributed under a free license. As in Unix-like oper-
ating systems, the IXA pipes consists of a set of processes chained
by their standard streams, in a way that the output of each process
feeds directly as input to the next one. The Unix pipeline metaphor
has been applied for NLP tools by adopting a very simple and well-
known data-centric architecture, in which every module/pipe is
interchangeable for another one as long as it reads and produces
the required data format. The IXA pipes are designed to minimize
or eliminate any installation/configuration/compilation effort and
are distributed under the Apache 2.0 license, which is free and
commercially friendly [1].

The data-centric architecture of the IXA pipes relies on a com-
mon interchange format in which both the input and output of
the modules needs to be formatted to represent and filter linguistic
annotations: the NLP Annotation Format (NAF8 [16]). NAF has
evolved from the KYOTO Annotation Framework (KAF [6]) and it is
7 http://ixa2.si.ehu.es/ixa-pipes.
8 http://wordpress.let.vupr.nl/naf/.

http://ixa2.si.ehu.es/ixa-pipes
http://hadoop.apache.org/
https://mahout.apache.org/
http://giraph.apache.org/
http://storm.incubator.apache.org/
http://ixa2.si.ehu.es/ixa-pipes
http://wordpress.let.vupr.nl/naf/

38 R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42
compliant with the Linguistic Annotation Format (LAF [18]). NAF is a
standoff layered representation of the analysis of a whole series of
NLP modules ranging from tokenization, part-of-speech tagging,
lemmatization, dependency parsing, named entity recognition,
semantic role labeling, event and entity-coreference to factuality
and opinions. NAF is a document based representation.

The IXA pipes currently provide the following linguistic annota-
tions for both English and Spanish: sentence segmentation, tokeni-
zation, part-of-speech (POS) tagging, lemmatization, Named Entity
Recognition and Classification (NERC), constituent parsing and
coreference resolution. To avoid duplication of efforts, the super-
vised probabilistic algorithms used to train the POS tagger, NERC
tagger and Constituent parser are those implemented by the
Apache OpenNLP machine learning API.9

We now describe the modules so far developed. We also present
their empirical evaluation. Additionally, in Section 3.3 we describe
other third-party NLP tools which have been added to the pipeline
in the context of the Newsreader project.10

ixa-pipe-tok provides rule-based Sentence Segmentation and
Tokenization. The rules are originally based on the Stanford English
Tokenizer,11 but with substantial modifications and additions. These
include tokenization for other languages such as French and Italian,
normalization according to the Spanish Ancora Corpus [28], para-
graph treatment, and more comprehensive gazetteers of non break-
ing prefixes. The tokenizer performs at peaks of around 250 K words
per second.

ixa-pipe-pos is a POS tagger and lemmatizer for English and
Spanish. Perceptron [10] models for English have been trained
and evaluated on the WSJ treebank using the usual partitions, as
explained in [29]; ixa-pipe-pos scores 97.07% vs 97.24% obtained
by the Stanford POS tagger [29]. For Spanish, Maximum Entropy
models have been trained and evaluated using the Ancora corpus,
which was randomly divided in 90% for training and 10% for test-
ing. We obtain a performance of 98.88% (the corpus partitions
are available for reproducibility). Giménez and Marquez [17]
report 98.86% whereas Freeling [22] report around 97%, although
they train and test on a different subsets of the Ancora corpus. Pip-
ing ixa-pipe-tok and ixa-pipe-pos annotates around 5500 words/s.

ixa-pipe-nerc provides Named Entity Recognition (NERC) for
English and Spanish trained on a variety of datasets. The experi-
ments performed in this paper use models trained on the CONLL
200212 and 200313 tasks for four types of named entities: persons,
locations, organizations, and names of miscellaneous entities that
do not belong to the previous three groups. The experiments
described in Section 4 use two very fast language-independent mod-
els using a rather simple set of local features (e.g., similar to that of
[9], except POS tag features). For English, Perceptron models have
been trained using the CoNLL 2003 dataset. We currently obtain
84.52 F1 which is coherent with other results reported with these
features [9,24]. Other, better performing models trained with exter-
nal knowledge are available (87.11 F1) but at the cost of slower
speed performance. The best Stanford NERC model reported on this
dataset achieves 86.86 F1 [15], whereas the best system on this data-
set achieves 90.80 F1 [24], using non-local features and substantial
external knowledge. For Spanish we currently obtain best results
training Maximum Entropy models. Our best model using only local
features obtains 80.20 F1 vs 81.39 F1 [7], the best result so far on this
dataset. Their result uses external knowledge and their system
obtains 79.28 F1 without it.
9 http://opennlp.apache.org.
10 http://www.newsreader-project.eu/.
11 http://www-nlp.stanford.edu/software/tokenizer.shtml.
12 http://www.clips.ua.ac.be/conll2002/ner/.
13 http://www.clips.ua.ac.be/conll2003/ner/.
ixa-pipe-parse provides statistical constituent parsing for Eng-
lish and Spanish. Maximum Entropy models are trained to build
shift-reduce bottom-up parsers [25] as implemented by the
Apache OpenNLP API. Parsing models for English have been trained
using the Penn Treebank and for Spanish using the Ancora corpus
[28]. For English we obtain 87.21 parseval F, a little bit lower than
other more fine-tuned parsers [11]. As far as we know, and
although previous approaches exist [12], ixa-pipe-parse provides
the first publicly available statistical parser for Spanish, obtaining
around 88.10 parseval F.

ixa-pipe-coref performs coreference resolution. The algorithm
is loosely based on the Stanford Multi Sieve Pass system [19]. So
far we have evaluated our module on the CoNLL 2011 dev set
and we are 2 CoNLL F scores behind the Stanford’s system (57.8
vs 59.3 CoNLL F1), the best on that task [19].
3.2. Related NLP toolkits

We believe that among the free, commercially friendly and mul-
tilingual toolkits, our NLP pipeline performs competitively in terms
of evaluation and performance, but also that, together with the
third-party tools added, provides one of the most, if not the most,
comprehensive ready-to-use NLP pipelines currently available
under a free and permissive license such as Apache License 2.0.

Other NLP toolkits provide similar functionalities to the IXA
pipes tools, although not many of them provide multilingual sup-
port. GATE [13] is an extensive framework supporting annotation
of text. GATE has some capacity for wrapping Apache UIMA com-
ponents,14 so it should be able to manage distributed NLP compo-
nents. It also provides cloud services for big data processing via
the GateCloud.15 However, GATE is a very large and complex system,
with a corresponding steep learning curve.

Freeling [22] provides multilingual processing for a number of
languages, including Spanish and English. As opposed to the IXA
pipes, Freeling is a monolithic toolkit written in C++ which needs
to be compiled natively. The Stanford CoreNLP16 is also a mono-
lithic suite, which makes it difficult to integrate other tools in its
chain.

Due to the data-centric architecture of IXA pipes, it is virtually
trivial to replace or extend the toolchain with a third-party tool.
The only requirement is for a tool to write and read NAF format,
which the kaflib library17 makes extremely easy.

Additionally, every IXA pipe also offers the possibility of easily
training new models with your own data for POS tagging, NERC
and constituent parsing. The IXA pipes are already being used for
big data processing in several FP7 European projects: OpeNER,18

NEWSREADER, QTLEAP,19 LIMOSINE20 among others. In addition to
the performance results stated in Section 3.1 and Table 2 provides
statistics about the individual performance of each of the processing
modules for two different datasets.

In the Newsreader project the final goal is to discover and struc-
ture the hidden knowledge in large amount of texts about what
happened to whom, when and where. Thus, the linguistic annota-
tion provided by the IXA pipes is not enough, as information about
factuality, semantic roles, etc. is required. To this aim, we exploit
the data-centric design and modularity of the NLP pipeline to eas-
ily chain other linguistic processors. As it has been already men-
tioned, the only requirement to integrate new tools in the
14 http://uima.apache.org/.
15 https://gatecloud.net/.
16 http://nlp.stanford.edu/software/corenlp.shtml.
17 https://github.com/ixa-ehu/kaflib.
18 http://www.opener-project.org.
19 http://qtleap.eu.
20 http://limosine-project.eu/.

http://opennlp.apache.org
http://www.newsreader-project.eu/
http://www-nlp.stanford.edu/software/tokenizer.shtml
http://www.clips.ua.ac.be/conll2002/ner/
http://www.clips.ua.ac.be/conll2003/ner/
http://uima.apache.org/
https://gatecloud.net/
http://nlp.stanford.edu/software/corenlp.shtml
https://github.com/ixa-ehu/kaflib
http://www.opener-project.org
http://qtleap.eu
http://limosine-project.eu/

R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42 39
pipeline is for any new tool to read and write NAF via its standard
input/output streams. The result is, to our knowledge, the most
comprehensive multilingual NLP pipeline out there.

3.3. Additional modules

We have integrated seven additional tools to the pipeline to add
the following linguistic annotations for the Newsreader project:
recognition of temporal expressions, word-sense disambiguation
(WSD), named entity disambiguation (NED), semantic role labeling
(SRL), factuality recognition, opinion mining, and resolution of
event coreference.

Temporal Expression Recognition: Timepro21 is a supervised
probabilistic tagger for the recognition of temporal expressions
(date, duration, set, time). Their TempEval3 trained model obtains
72.36 F score.

Word Sense Disambiguation: The svm_wsd implements a
machine learning Word Sense Disambiguation system based on
Support Vector Machines.22

Named Entity Disambiguation: DBpedia Spotlight [21] is a Wik-
ification tool for automatically annotating mentions of DBpedia
resources in text, providing a solution for linking unstructured
information sources to the Linked Open Data cloud through DBpe-
dia. DBpedia Spotlight recognizes that names of concepts or enti-
ties have been mentioned (e.g. ‘‘Michael Jordan’’), and
subsequently matches these names to unique identifiers (e.g. the
machine learning professor23 or the basketball player24). We have
created a NED client to query the DBpedia Spotlight server for the
Named entities detected by the ixa-pipe-nerc module.

Semantic Role Labelling: The Mate tools25 provide a state-of-
the-art dependency parser and semantic role labeler [5]. The tools
are language independent, provide a very high accuracy and are fast.
The dependency parser had the top score for German and English
dependency parsing in the CoNLL shared task 2009.

Factuality: We use a tool to detect factuality which has been
developed within the NewsReader project.26 The tool aims at clas-
sifying whether an linguistic expression or event has actually hap-
pened. The module has been trained on the main resource for
factuality detection, namely, the FactBank [26].

Opinion miner: An opinion miner based on machine learning.
The opinion mining task is divided into two steps: detection of
opinion entities (holder, target and expression) using Conditional
Random Fields and Opinion entity linking (expression < target
and expression < holder) using binary Support Vector Machines.27

Event Coreference resolution: We use the tool developed by
[14] to perform intra and across documents event coreference
resolution.
Table 1
LP modules installed on the VMs. The last column shows the pipeline version where
the modules were used.

Module Description Pipeline

ixa-pipe-tok Tokenizer, sentence splitter (1,2)
ixa-pipe-pos POS tagger (1,2)
ixa-pipe-parse Constituency parser (2)
TimePro Time expression recognition (1,2)
4. Big data processing

In this section we describe the different configurations created
with the NLP tools described in the previous section. The aim is to
configure a linguistic pipeline that is able to automatically extract
or discover knowledge in huge amounts of texts by using big data
processing with the tools that will be presented in this section.

Scalable NLP processing requires parallel processing of textual
data. The parallelization can be effectively performed at several
levels, from deploying copies of the same linguistic processor
21 http://textpro.fbk.eu/docs.html.
22 https://github.com/cltl/svm_wsd.
23 http://dbpedia.org/page/Michael_I._Jordan.
24 http://dbpedia.org/page/Michael_Jordan.
25 http://code.google.com/p/mate-tools/.
26 https://github.com/newsreader/Factuality-Classifier.
27 https://github.com/cltl/opinion_miner_deluxe.
(LP) among servers to the reimplementation of the core algorithms
of each module using multi-threading, parallel computing. This last
type of fine-grained parallelization is clearly out of the scope of the
present work, as it is unreasonable to re-implement all the mod-
ules needed to perform such a complex task as mining events.
We rather aim to processing huge amount of textual data by defin-
ing and implementing an architecture for NLP which allows the
parallel processing of documents.
4.1. A distributed pipeline for NLP processing

Deploying Linguistic Processors (LPs) often requires pre-install-
ing a large set of common software modules on the same machine,
which must be accessible to the LP. The capacity to reproduce
experiment results is a crucial instrument in any scientific endea-
vor and thus, we aim at building a NLP pipeline which analyzes the
documents in a reproducible manner: an LP module applied to a
particular input text has to produce the same output regardless
of the software framework (machine, operating system, etc.) on
which it is installed. Therefore, special care has to be taken to guar-
antee that the same version of the LP modules, along with the exact
same dependencies, are deployed among the different machines.

This have led us to adopt virtual machine (VM) technologies for
deploying the LP modules. Virtualization is a widespread practice
that increases the server utilization and addresses a variety of
dependencies and installation requirements. Besides, virtualization
is a ‘de facto’ standard in cloud computing solutions, which offers
the possibility of installing many copies of the virtual machines on
commodity servers.

Specifically, we create one VM per language and pipeline con-
figuration so that a full processing chain in one language can be
run on a single VM. This approach allows us to scale horizontally
(or scale out) as a solution to the problem of dealing with massive
quantities of data. We thus scale out our solution for NLP by
deploying all the NLP modules into VMs and making as many cop-
ies of the VMs as necessary to process an initial batch of documents
on time.

Table 1 shows the modules installed into the English VM. We
defined two pipelines for event extraction, each one comprising
different modules (last column in the table).

Inside each VM the modules are managed using the Storm
framework for streaming computing, where each LP module is
wrapped as a bolt node inside the Storm topology (c.f. Section 2).
When a new tuple arrives, the bolt node calls an external command
sending the tuple content to the standard input stream. The output
of the LP module is received from the standard output stream and
passed to the next node in the topology. Each module thus receives
a NAF document with the (partially annotated) document and adds
ixa-pipe-nerc Named Entity Recognition (1,2)
WSD Word Sense Disambiguation (1,2)
dbpedia-spotlight Named Entity Disambiguation (1,2)
ixa-pipe-coref Coreference resolution (2)
MATE Dependency parser and Semantic Role Labeling (1,2)
opinion miner Opinion detection and Opinion holders to targets (2)
factuality Factuality (1,2)
eCoref Event coreference (1,2)

http://textpro.fbk.eu/docs.html
https://github.com/cltl/svm_wsd
http://dbpedia.org/page/Michael_I._Jordan
http://dbpedia.org/page/Michael_Jordan
http://code.google.com/p/mate-tools/
https://github.com/newsreader/Factuality-Classifier
https://github.com/cltl/opinion_miner_deluxe

Table 2
Total time (in s) and percentage taken by each module in the car and wikinews datasets. Note that we use two different versions of the pipeline on each dataset.

Module Car dataset Wikinews dataset

Time (s) % # Elems. Time (s) % # Elems.

ixa-pipe-tok 12,152 0.41 35,187,862 3954 0.29 5,919,406
opinion-miner – – – 13,584 0.99 66,771
ixa-pipe-pos 45,352 1.55 34,527,492 14,802 1.08 5,906,089
WSD 78,080 2.66 595,874 19,454 1.42 81,797
ixa-pipe-parse – – – 22,780 1.66 9,716,924
MATE-DEP 121,092 4.13 31,943,943 25,688 1.87 5,611,177
dbpedia-spotlight 75,086 2.56 1,960,604 27,819 2.03 3,02,731
factuality 91,960 3.14 4,327,233 27,694 2.02 871,844
eCoref 73,098 2.49 3,747,382 31,183 2.27 812,787
ixa-pipe-nerc 112,643 3.84 2,475,062 43,750 3.19 355,284
TimePro – – – 69,514 5.07 81,599
ixa-pipe-coref – – – 297,627 21.71 188,361
MATE-SRL 2,322,472 79.21 5,246,967 773,055 56.39 1,033,657

Total 2,931,935 100.00 120,012,419 1,370,904 100.00 30,948,427

40 R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42
new annotations into it. The tuples in our Storm topology consist of
two elements, a document identifier and the document itself,
which is encoded as a string with the XML serialization of the
NAF document.

If one module fails to produce a valid NAF document, the input
document is moved to a specific directory and a log entry is cre-
ated. The processing of this particular document is stopped at this
point, and the system starts processing the next document in the
input directory.

Inside the VM there is an initial spout which scans for a partic-
ular directory. When a new document arrives, the spout passes the
document to the first node in the pipeline, which in turn will pass
its output to the next stage, and so on. This setting is similar to a
standard pipeline architecture but it has a main advantage: when
a module finishes its processing, it passes the annotated document
to the next step, and starts processing the next document. There-
fore, in this setting there are as many documents processed in par-
allel as stages in the pipeline.

Note that in this approach Storm is used within a single VM and
that this setting is not ideal nor the type of architecture for which
the Storm framework is meant to be used for. However, using
Storm as the controlling backbone of the LP modules installed
within each VM has many advantages: First, inside each VM the
Storm topology is able to run many LP modules in parallel. Second,
having implemented this batch approach using Storm, it is straight-
forward to adopt a fully streaming architecture, as described in Sec-
tion 5.1, where LP modules reside on several distributed VMs.
Finally, the initial experiments performed using the batch
approach will give valuable insights as to identifying those lan-
guage processors which require more resources than others.
5. Experiments

As explained above, we ran two versions of the pipeline in our
experiments and each version was used to process a different set
of documents. The first dataset (the car dataset) consists of
64,540 documents which were selected by first performing a query
on a news collection by selecting interesting documents describing
events which involve two or more car companies. The second data-
set (the wikinews dataset) is a collection of 18,886 documents
extracted from the Wikinews website.28 In order to process the doc-
uments, each dataset was split into batches, each one containing
3000 documents, and each batch was sent to the LP pipeline for
28 http://en.wikinews.org.
linguistic processing. In total, we used 8 VMs running in parallel
for the experiments.

Table 2 shows the total time spent by each module, the total
percentage of the time, and the number of elements extracted from
both pipelines and datasets. The elapsed times shown in the table
are calculated by summing the elapsed time spent by each module.
Therefore, the times shown in the table do not consider that many
of those documents are actually processed in parallel. The table
shows that if the car and wikinews documents were processed
sequentially, they would require 33.9 and 15.8 days to process,
respectively. Having 8 VMs running on parallel, these documents
were actually processed in around 5 and 2 days.

Table 2 also suggests an unbalance regarding the time spent by
each module of the pipeline. In the car dataset the MATE-SRL mod-
ule takes almost the 80% of the whole processing time and is by far
the module needing more time to complete its task. In the wiki-
news dataset, MATE-SRL takes the 56% of the overall elapsed time,
followed by the ixa-pipe-coref module which spends the 21% of
the overall time. These results suggest that both modules are good
candidates for parallelization; thus, if we were able to execute sev-
eral instances of those modules in parallel, the overall performance
of the linguistic processing would boost considerably.
5.1. Running modules in parallel

The Storm framework allows several instances of each topology
node, thus allowing actual parallel processing. We thus performed
a separate experiment with the aim of measuring the expected
performance gain when executing time consuming modules in par-
allel [4]. The experiments were performed on a PC machine with an
Intel Core i5-3570 3.4 GHz processor with 4 cores and 4 GB RAM,
running on Linux.

For this experiment we wanted to mimic the pipeline described
in the previous section. Specifically, we wanted one single module
to consume most of the resources required. In this sense, we would
be able to measure the performance boost when running many
instances of this demanding module in parallel. The previous sec-
tion showed that MATE-SRL is such a resource demanding module.
However, running many MATE-SRL processes on a single machine
turned out to be a rather difficult task, which consumed all the
machine available RAM. Therefore, and to keep the experiment
manageable in terms of resources and time, we created a small
NLP pipeline comprising four modules: ixa-pipe-tok, ixa-pipe-pos,
ixa-pipe-nerc and UKB, a tool for performing graph-based Word
Sense Disambiguation (WSD) using a pre-existing knowledge base
[3,2].

http://en.wikinews.org

R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42 41
Initially the four modules are executed following a pipeline
architecture, namely, each module running sequentially one after
the other. This setting is the baseline system and the starting point
of our analysis.

In a second experiment we implement a Storm topology follow-
ing again a pipeline approach. This setting is similar to the baseline
system but has an advantage: when a module finishes the process-
ing, it passes the annotated document to the next step, and starts
processing the next document. Therefore, in this setting there are
as many documents processed in parallel as there are stages in
the pipeline. Given that the pipeline consists of 4 modules, it will
be able to process 4 documents concurrently. Finally, we experi-
ment creating many instances of some selected bolt nodes, there-
fore allowing the parallel execution of them.

We experimented processing 1000 documents, each one con-
taining an average of 1200 words and 50 sentences. We performed
experiments with a subset of 100 documents (138,803 words, 5416
sentences) and with the complete set of 1000 documents
(1,185,933 words, 48,746 sentences).

Table 3 shows the time elapsed in processing the documents.
The first six rows correspond to the processing of 100 documents
and the last six rows to the processing of 1000 documents. As
Table 3 shows, the baseline system runs at a performance of about
100 words per second. The simple Storm topology yields a perfor-
mance gain of less than 13%, which is less than expected. The 96%
of the processing time is spent by the UKB WSD module, which is
by far the module needing more time to complete its task.
Although the Storm topology can in principle multiply the perfor-
mance by a factor of four, in practice all the computing is concen-
trated in one single node, which severely compromises the overall
performance gain.

With these points in mind, we experimented with four alterna-
tives (named Storm2, Storm4, Storm5, and Storm6), with respectively
2, 4, 5 and 6 instances of the UKB WSD module running in parallel.
The results in Table 3 show that running multiple instances of the
UKB WSD does increase the overall performance significantly. The
biggest gain is obtained with five instances of WSD, with an
increase of 63% in the overall performance. Therefore, more WSD
instances do not help improving the results, which is expected
given the fact that the machine used for the experiments has 4
CPU cores.

Summarizing, this initial experiments have shown that there is
large room for improvement regarding NLP processing perfor-
mance. A careful identification of the most time and resource con-
suming NLP modules would allow creating parallel topologies
which will yield much better performance. With the use of large
Table 3
Performance of the NLP pipeline in different settings: pipeline is the basic pipeline
used as baseline; Storm is the same pipeline executed as a Storm topology; Storm2

represents a Storm pipeline with 2 instances of the WSD module (Storm4 has 4
instances, Storm5 5, and Storm6 6).

Total time Words/s Sent/s Gain (%)

100 documents
Pipeline 21 m16 s 108.8 4.2 –
Storm 18 m43 s 123.5 4.8 12.0
Storm2 10 m48 s 214.3 8.4 49.3
Storm4 7 m46 s 297.6 11.6 63.5
Storm5 7 m44 s 299.1 11.7 63.7
Storm6 7 m48 s 296.1 11.6 63.3

1000 documents
Pipeline 3 h15 m16 s 101.2 4.2 –
Storm 2 h50 m21 s 116.0 4.8 12.8
Storm2 1 h40 m37 s 196.5 8.1 48.5
Storm4 1 h14 m25 s 265.6 10.9 61.9
Storm5 1 h10 m45 s 279.3 11.5 63.8
Storm6 1 h11 m37 s 276.0 11.3 63.3
multi-node clusters, we can expect a significant boost in the
performance.

6. Conclusion and future work

In this paper we have presented a new distributed architecture
and technology for scaling up text analysis to keep pace with the
rate of the current growth of news streams and collections. We
designed and deployed a complete chain of NLP modules within
virtual machines. We also present the NLP modules included into
the virtual machines, most of them coming from the IXA pipes
tools29 [1]. Moreover, we provide empirical performance results
when applied on realistic volumes of news within hard time
constraints.

The experiments described here follow a pipeline approach, but
in principle we could also run them on non-linear topologies,
where two modules are processing the same document at the same
time. Non-linear topologies require identifying the pre- and post-
requisites of each module, thus deducting the indications as to
which modules must precede which and which modules may be
run in parallel on the same document. They would also need a spe-
cial bolt that would receive the input from many NLP modules bolts
(each one conveying different annotations on the same document)
and would merge every source of information producing a single,
unified document.

We want also try different levels of granularity. For instance, a
POS tagger works at sentence level, the WSD module works at par-
agraph level, whereas a coreference module works at document
level. We want to experiment splitting the input document into
pieces of the required granularity, so that the NLP modules can
quickly analyze those pieces, thus increasing the overall processing
speed.

As we are developing a fully distributed and highly scalable sys-
tem, several architecture-related issues come out. One of them is
the input method that will receive text documents and send them
to the pipeline. To accomplish that, we foresee the need of a dis-
tributed message queue system as the input. Another issue is the
fact that too much data traffic is produced between each NLP mod-
ule, since a full NAF document with all the annotation layers must
be sent from each module for every document to be processed. This
could be avoided using a distributed NoSQL database like Mon-
goDB, and retrieving and storing only the annotation layers
required and produced by each module.

Acknowledgements

We are grateful to the anonymous reviewers for their insightful
comments. This work has been partially funded by the OpeNER
(FP7 Grant No. 296451), NewsReader (FP7-ICT 2011-8-316404)
and SKaTer (TIN2012-38584-C06-02) projects. Zuhaitz Beloki’s
work is funded by a Ph.D. grant from the University of the Basque
Country (UPV/EHU), Spain.

References

[1] R. Agerri, J. Bermudez, G. Rigau, IXA Pipeline: efficient and ready to use
multilingual NLP tools, in: Proceedings of the 9th Language Resources and
Evaluation Conference (LREC2014), Reykjavik, Iceland, 2014.

[2] E. Agirre, O. López de Lacalle, A. Soroa, Random walks for knowledge-based
word sense disambiguation, Comput. Linguist. 40 (2014) 57–84.

[3] E. Agirre, O.L.D. Lacalle, A. Soroa, Knowledge-based WSD on specific domains:
performing better than generic supervised WSD, in: Proceedings of IJCAI 2009,
2009.

[4] X. Artola, Z. Beloki, A. Soroa, A stream computing approach towards scalable
NLP, in: Proceedings of the 9th Language Resources and Evaluation Conference
(LREC2014), Reykjavik, Iceland, 2014.
29 http://ixa2.si.ehu.es/ixa-pipes.

http://refhub.elsevier.com/S0950-7051(14)00399-2/h0010
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0010
http://ixa2.si.ehu.es/ixa-pipes

42 R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42
[5] A. Björkelund, L. Hafdell, P. Nugues, Multilingual semantic role labeling, in:
Proceedings of the Thirteenth Conference on Computational Natural Language
Learning: Shared Task CoNLL ’09, Boulder, Colorado, USA, 2009, pp. 43–48.

[6] W. Bosma, P. Vossen, A. Soroa, G. Rigau, M. Tesconi, A. Marchetti, M.
Monachini, C. Aliprandi, KAF: a generic semantic annotation format, in:
Proceedings of the GL2009 Workshop on Semantic Annotation, 2009.

[7] X. Carreras, L. Marquez, L. Padro, Named entity extraction using AdaBoost, in:
Proceedings of the 6th Conference on Natural Language Learning, vol. 20, 2002,
pp. 1–4.

[8] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
S. Zdonik, Scalable distributed stream processing, in: CIDR 2003 - First Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, 2003.

[9] S. Clark, J. Curran, Language independent NER using a maximum entropy
tagger, in: Proceedings of the Seventh Conference on Natural Language
Learning (CoNLL-03), Edmonton, Canada, 2003, pp. 164–167.

[10] M. Collins, Discriminative training methods for hidden markov models: theory
and experiments with perceptron algorithms, in: Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing, vol. 10,
2002, pp. 1–8.

[11] M. Collins, Head-driven statistical models for natural language parsing,
Comput. Linguist. 29 (2003) 589–637.

[12] B. Cowan, M. Collins, Morphology and reranking for the statistical parsing of
Spanish, in: Proceedings of the Conference on Human Language Technology
and Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, 2005, pp. 795–802.

[13] H. Cunningham, Gate, a general architecture for text engineering, Comp.
Human. 36 (2002) 223–254.

[14] A. Cybulska, P. Vossen, Semantic relations between events and their time,
locations and participants for event coreference resolution, in: Proceedings of
the International Conference Recent Advances in Natural Language Processing
RANLP 2013, INCOMA Ltd., Hissar, Shoumen, Bulgaria, 2013, pp. 156–163.

[15] J.R. Finkel, T. Grenager, C. Manning, Incorporating non-local information into
information extraction systems by gibbs sampling, in: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, 2005, pp. 363–
370.

[16] A. Fokkens, A. Soroa, Z. Beloki, N. Ockeloen, G. Rigau, W.R. van Hage, P. Vossen,
NAF and GAF: linking linguistic annotations, in: Proceedings of 10th Joint ACL/
ISO Workshop on Interoperable Semantic Annotation (ISA-10), LREC 2014
Workshop, Reykjavik, Iceland, 2014, p. 9.

[17] J. Giménez, L. Marquez, Svmtool: a general POS tagger generator based on
support vector machines, in: Proceedings of the 4th International Conference
on Language Resources and Evaluation, 2004.
[18] N. Ide, L. Romary, Éric Villemonte de La Clergerie, International standard for a
linguistic annotation framework, in: Proceedings of the HLT-NAACL 2003
Workshop on Software Engineering and Architecture of Language Technology
Systems (SEALTS), Association for Computational Linguistics, 2003.

[19] H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, D. Jurafsky,
Deterministic coreference resolution based on entity-centric, precision-
ranked rules, Comput. Linguist. (2013) 1–54.

[20] R. McCreadie, C. Macdonald, I. Ounis, M. Osborne, S. Petrovic, Scalable
distributed event detection for twitter, in: Proceedings of IEEE International
Conference on Big Data, 2013.

[21] P.N. Mendes, J, Daiber, M. Jakob, C. Bizer, Evaluating DBpedia spotlight for the
TAC-KBP entity linking task, in: Proceedings of the TACKBP 2011 Workshop,
2011.

[22] L. Padró, E. Stanilovsky, Freeling 3.0: towards wider multilinguality, in:
Proceedings of the Language Resources and Evaluation Conference (LREC
2012), ELRA, Istanbul, Turkey, 2012.

[23] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, V. Vyas, Web-scale
distributional similarity and entity set expansion, Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing, vol. 2,
Association for Computational Linguistics, Stroudsburg, PA, USA, 2009, pp.
938–947.

[24] L. Ratinov, D. Roth, Design challenges and misconceptions in named entity
recognition, in: Proceedings of the Thirteenth Conference on Computational
Natural Language Learning, 2009, pp. 147–155.

[25] A. Ratnaparkhi, Learning to parse natural language with maximum entropy
models, Mach. Learn. 34 (1999) 151–175.

[26] R. Saurí, J. Pustejovsky, FactBank: a corpus annotated with event factuality,
Lang. Resour. Eval. 43 (2009) 227–268.

[27] S. Singh, A. Subramanya, F. Pereira, A. McCallum, Large-scale cross-document
coreference using distributed inference and hierarchical models, in:
Association for Computational Linguistics: Human Language Technologies
(ACL HLT), 2011.

[28] M. Taulé, M.A. Martí, M. Recasens, AnCora: multilevel annotated corpora for
Catalan and Spanish, in: LREC, 2008.

[29] K. Toutanova, D. Klein, C. Manning, Y. Singer, Feature-rich part-of-speech
tagging with a cyclic dependency network, in: Proceedings of HLT-NAACL,
2003, pp. 252–259.

[30] H. Wu, Z. Fei, A. Dai, M. Sammons, D. Roth, S. Mayhew, Illinoiscloudnlp: text
analytics services in the cloud, in: Proceedings of (LREC-2014), 2014.

[31] M. Zaharia, N.M.M. Chowdhury, M. Franklin, S. Shenker, I. Stoica, Spark: Cluster
Computing with Working Sets. Technical Report EECS Department, University
of California, Berkeley, 2010.

http://refhub.elsevier.com/S0950-7051(14)00399-2/h0055
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0055
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0060
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0060
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0060
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0060
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0060
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0065
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0065
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0070
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0070
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0070
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0070
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0070
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0090
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0090
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0090
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0090
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0090
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0095
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0095
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0095
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0110
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0110
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0110
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0110
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0115
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0115
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0115
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0115
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0115
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0115
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0125
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0125
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0130
http://refhub.elsevier.com/S0950-7051(14)00399-2/h0130

	Big data for Natural Language Processing: A streaming approach
	1 Introduction
	2 Big data frameworks
	3 NLP pipeline
	3.1 IXA pipes
	3.2 Related NLP toolkits
	3.3 Additional modules

	4 Big data processing
	4.1 A distributed pipeline for NLP processing

	5 Experiments
	5.1 Running modules in parallel

	6 Conclusion and future work
	Acknowledgements
	References

