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Lemmatization is a natural language processing (NLP) task which consists of producing,
from a given inflected word, its canonical form or lemma. Lemmatization is one of the
basic tasks that facilitate downstream NLP applications, and is of particular importance
for high-inflected languages. Given that the process to obtain a lemma from an inflected
word can be explained by looking at its morphosyntactic category, including fine-grained
morphosyntactic information to train contextual lemmatizers has become common
practice, without considering whether that is the optimum in terms of downstream
performance. In order to address this issue, in this paper we empirically investigate
the role of morphological information to develop contextual lemmatizers in six languages
within a varied spectrum of morphological complexity: Basque, Turkish, Russian, Czech,
Spanish and English. Furthermore, and unlike the vast majority of previous work, we also
evaluate lemmatizers in out-of-domain settings, which constitutes, after all, their most
common application use. The results of our study are rather surprising. It turns out that
providing lemmatizers with fine-grained morphological features during training is not
that beneficial, not even for agglutinative languages. In fact, modern contextual word
representations seem to implicitly encode enough morphological information to obtain
competitive contextual lemmatizers without seeing any explicit morphological signal.
Moreover, our experiments suggest that the best lemmatizers out-of-domain are those
using simple UPOS tags or those trained without morphology and, finally, that current
evaluation practices for lemmatization are not adequate to clearly discriminate between
models.

1. Introduction

Lemmatization is one of the basic NLP tasks which consists of converting an inflected
word form (e.g., eating, ate, eaten) into its canonical form (e.g., eat), usually known
as the lemma. Thus, we follow the formulation of lemmatization as defined by the
SIGMORPHON 2019 shared task (Aiken et al. 2019). Lemmatization is commonly
used when performing many NLP tasks such as information retrieval, named entity
recognition, sentiment analysis, word sense disambiguation, and others. For example,
for morphologically rich languages named entities are often inflected, which means
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that lemmatization is required as an additional process. Thus, lemmatization is more
challenging for languages with rich inflection as the number of variations for every
different word form in such languages is very high. Table 1 illustrates this point by
showing the differences in inflections of the word ‘cat’ for four languages with different
morphological structure. This language sample offers a spectrum of varied complexity,
ranging from the more complex ones, Basque and Russian, to the less inflected ones, such
as Spanish and English, in that order.

Table 1
Examples of inflected forms of the word ‘cat’ in Basque, English, Spanish and Russian.
English Spanish Russian Basque
cat gato KOT katu
cats gata KOTBI katuak
gatos KOTa, katua
gatas KOTY katuari
KOTOM katuarekin
KOTe katuek
KOTOB katuekin
KOTaM katuei
KOTaMHU katuen
KOTaX katurik
katuarentzat
katuentzat

As we can see in Table 1, the word ‘cat’ can vary in English by changing from
singular to plural. In Spanish gender (masculine/feminine) is also marked. Things get
more complicated with languages that mark case. For example, in Russian there are six
cases while for Basque there are 16, some of which can be doubly inflected.

Both the context in which it occurs and the morphosyntactic form of a word play a
crucial role to approach automatic lemmatization (McCarthy et al. 2019). Thus, in Figure
1 we can see a fragment of a Russian sentence in which each inflected word form has a
corresponding lemma (in red). Furthermore, each inflected form has an associated number
of morphosyntactic features (expressed as tags) depending on its case, number, gender,
animacy and others. Morphological analysis is crucial for lemmatization as it explains
the process required to produce the lemma from the word form, which is why it has
traditionally been used as a stepping stone to design systems to perform lemmatization.

As many other tasks in NLP, the first approaches to lemmatization were rule-based,
but nowadays the best performing models address lemmatization as a supervised task
in which learning in context is crucial. Regardless of the learning method used, three
main trends can be observed in current contextual lemmatization: (i) those that use gold
standard or learned morphological tags to generate features to learn lemmatization in a
pipeline approach (Chrupala, Dinu, and van Genabith 2008; Yildiz and Tantug 2019);
(ii) those that aim to jointly learn morphological tagging and lemmatization as a single
task (Miiller et al. 2015; Malaviya, Wu, and Cotterell 2019; Straka, Strakovd, and Hajic
2019); (iii) systems that do not use any explicit morphological signal to learn to lemmatize
(Chakrabarty, Pandit, and Garain 2017; Bergmanis and Goldwater 2018).

Research on contextual (mostly neural) lemmatization was greatly accelerated by
the first release of the Universal Dependencies (UD) data (de Marneffe et al. 2014; Nivre
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Morph.tag: FEM; INAN; FEM; IPFV; FIN; INAN; MASC; ADP  INAN; NEUT
NOM; 5G; N V; 5G; IND; P5T; INS; 5G; N INS; 5G; N
MID
Lemma: newepa 3aKaH4uBaTbcA  3an c o3epo.
Inflection: Mewepa 3aKaH4YMBanace zanom c o3epom .
Translation: The cave ended with a hall with alake.
Figure 1

Example of a morphologically tagged and lemmatized sentence in Russian using the UniMorph
annotation scheme.

et al. 2017), but specially by the contextual lemmatization shared task organized at
SIGMORPHON 2019, which included UniMorph datasets for more than 50 languages
(McCarthy et al. 2019). It should be noted that the best models in the task used
morphological information either as features (Yildiz and Tantug 2019) or as part of
a joint or a multitask approach (Straka, Strakovd, and Hajic 2019). However, the large
majority of previous approaches have used all the morphological tags from UniMorph/UD
assuming that fine-grained morphological information must be always beneficial for
lemmatization, especially for highly inflected languages, but without analyzing whether
that is the optimum in terms of downstream performance.

In order to address this issue, in this paper we empirically investigate the role of
morphological information to develop contextual lemmatizers in six languages within a
varied spectrum of morphological complexity: Basque, Turkish, Russian, Czech, Spanish
and English. Furthermore, previous work has shown that morphological taggers substan-
tially degrade when evaluated out-of-domain, be that any type of text different from the
data used for training in terms of topic, text genre, temporality, etc. (Manning 2011).
This point led us to research whether lemmatizers based on fine-grained morphological
information will degrade more when used out-of-domain than those requiring only coarse-
grained UPOS tags. We believe that this is also an important point because lemmatizers
are mostly used out-of-domain, namely, to lemmatize data from a different distribution
with respect to the one that was employed for training.

Taking these issues into consideration, in this paper we set to investigate the following
research questions with respect to the actual role of morphological information to
perform contextual lemmatization. First, is fine-grained morphological information really
necessary, even for high-inflected languages? Second, are modern context-based word
representations enough to learn competitive contextual lemmatizers without including
any explicit morphological signal for training? Third, do morphologically enriched lem-
matizers perform worse out-of-domain as the complexity of the morphological features
increases? Four, what is the optimal strategy to obtain robust contextual lemmatizers
for out-of-domain settings? Finally, are current evaluation practices adequate to mean-
ingfully evaluate and compare contextual lemmatization techniques?

The conclusions from our experimental study are the following: (i) fine-grained
morphological features do not always benefit, not even for agglutinative languages; (ii)
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modern contextual word representations seem to implicitly encode enough morphological
information to obtain state-of-the-art contextual lemmatizers without seeing any explicit
morphological signal; (iii) the best lemmatizers out-of-domain are those using simple
UPOS tags or those trained without explicit morphology; (iv) current evaluation practices
for lemmatization are not adequate to clearly discriminate between models, and other
evaluation metrics are required to better understand and manifest the shortcomings of
current lemmatization techniques. The generated code and datasets are publicly available
to facilitate the reproducibility of the results and further research on this topic.!

The rest of the paper is structured as follows. The next section discusses the most
relevant work related to contextual lemmatization. The systems and datasets used in
our experiments are presented in Sections 4 and 3, respectively. Section 5 presents the
experimental setup applied to obtain the results, which are reported in Section 6. Section
7 provides a discussion and error analysis of the results. We finish with some concluding
remarks in Section 8.

2. Background

First approaches to lemmatization consisted of systems based on dictionary lookup
and/or rule-based finite state machines (Karttunen, Kaplan, and Zaenen 1992; Oflazer
1993; Alegria et al. 1996; van den Bosch and Daelemans 1999; Dhonnchadha 2002;
Segalovich 2003; Carreras et al. 2004; Stroppa and Yvon 2005; Jongejan and Dalianis
2009). Grammatical rules in such systems, either hand-crafted or learned automatically
by using machine learning, were leveraged to perform lemmatization together with the
use of lexicons or morphological analyzers that returned the correct lemma. The problem
of unseen and rare words was solved by generating a set of exceptions added to the
general set of rules (Karttunen, Kaplan, and Zaenen 1992; Oflazer 1993) or by using
a probabilistic approach (Segalovich 2003). Such systems resulted in very language-
dependent approaches, and in most of the cases they required huge linguistic knowledge
and effort, especially in the case of those languages with more complex, high-inflected
morphology.

The appearance of large annotated corpora with morphological information and
lemmas facilitated the development of machine learning methods for lemmatization
in multiple languages. One of the core projects that gathered annotated corpora for
more than 90 languages is the Universal Dependencies (UD) initiative (Nivre et al.
2017). This project offers a unified morphosyntactic annotation across languages with
language-specific extensions when necessary. Based on the UD data, the Universal Mor-
phology (UniMorph) project (McCarthy et al. 2020) converted the UD annotations into
UniMorph, a universal tagset for morphological annotation (based on Sylak-Glassman
(2016)), where each inflected word form is associated with a lemma and a set of
morphological features. The current UniMorph dataset includes 118 languages, including
extremely low-resourced languages such as Quechua, Navajo and Haida.

The assumption that context could help with unseen and ambiguous words led to
the creation of supervised contextual lemmatizers. The pioneer work on this topic is
perhaps the statistical contextual lemmatization model provided by Morfette (Chrupala,
Dinu, and van Genabith 2008). Morfette uses a Maximum Entropy classifier to predict
morphological tags and lemmas in a pipeline approach. Interestingly, instead of learning
the lemmas themselves, Chrupala, Dinu, and van Genabith (2008) propose to learn

1 https://github.com/oltoporkov/morphological-information-datasets
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automatically induced lemma classes based on the shortest edit script (SES), which
consists of the number of edits necessary to convert the inflected word form into its
lemma. Morfette has influenced many other works on contextual lemmatization, such as
the system of Gesmundo and SamardZzi¢ (2012), IXA pipes (Agerri, Bermudez, and Rigau
2014; Agerri and Rigau 2016), Lemming (Miiller et al. 2015) and the system of Malaviya,
Wu, and Cotterell (2019). The importance of using context to learn lemmatization is
investigated in the work of Bergmanis and Goldwater (2018). They compare context-
free and context-sensitive versions of their neural lemmatizer Lematus and evaluate
them across 20 languages. Results show that including context substantially improves
lemmatization accuracy and it helps to better deal with the out-of-vocabulary problem.

The next step in the development of contextual lemmatization systems came with
the supervised approaches based on deep learning algorithms and vector-based word
representations (Chakrabarty, Pandit, and Garain 2017; Dayanik, Akyiirek, and Yuret
2018; Bergmanis and Goldwater 2018; Malaviya, Wu, and Cotterell 2019). The parallel
development of the transformer architecture (Vaswani et al. 2017) and the appearance
of BERT (Devlin et al. 2019) and other transformer-based masked language models
(MLMs) offered the possibility to significantly improve lemmatization results. Thus,
most of the participating systems in the SIGMORPHON 2019 shared task on contextual
lemmatization for 66 languages were based on MLMs (McCarthy et al. 2019). The baseline
provided by the task was based on the work of Malaviya, Wu, and Cotterell (2019), a
system which performs joint morphological tagging and lemmatization.

To the best of our knowledge, current state-of-the-art results in contextual lemma-
tization are provided by those models that achieved best results in the SIGMORPHON
2019 shared task. The highest overall accuracy was achieved by UDPipe (Straka,
Strakova, and Hajic 2019). Using UDPipe 2.0 (Straka 2018) as a baseline, they added
pre-trained contextualized BERT and Flair embeddings as an additional input to the
network. The overall accuracy (average across all languages) was 95.78, the best among
all the participants.

The second best result (95 overall word accuracy) in the task was obtained by the
CHARLES-SAARLAND system (Kondratyuk 2019). This system consists of a combina-
tion of a shared BERT encoder and joint lemma and morphology tag decoder. The model
uses a two-stage training process, in which it first performs a multilingual training over
all treebanks, and then they execute the same process monolingually, maintaining the
previously learned multilingual weights. Morphological tags in this case are calculated
jointly and lemmas are also represented as SES. The experiments are performed using
multilingual BERT in combination with the methods introduced by UDify (Kondratyuk
and Straka 2019) for BERT fine-tuning and regularization.

The third best result (94.76) was reported by Morpheus (Yildiz and Tantug 2019).
Morpheus uses a two-level LSTM network which gets as input the vector-based repre-
sentations of words, morphological tags and SES. Morpheus then aims to jointly output,
for a given sequence, their corresponding morphological labels and the SES representing
the lemma class which is later decoded into its lemma form.

Thus, it can be seen that a common trend in current contextual lemmatization
is to use the morphological information provided by the full UniMorph labels without
taking into consideration whether this is the optimal setting. Furthermore, lemmatization
techniques are only evaluated in-domain, resulting in extremely, and perhaps deceptive,
high results for the large majority of the 66 languages included in the SIGMORPHON
2019 data.
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3. Languages and Datasets

In order to address the research questions formulated in the Introduction, we selected the
following six languages: Basque, Turkish, Russian, Czech, Spanish and English. Such a
choice will allow us to compare the role of fine-grained morphological information to learn
contextual lemmatization within a range of languages of varied morphological complexity.
In this Section we briefly describe general morphological characteristics of each language
as well as the specific datasets used.

3.1 Languages

Basque and Turkish are agglutinative languages with morphology mostly of the suffixing
type. Basque is a language isolate and does not belong to any language group while
Turkish is a member of the Oghuz group of the Turkic family. These two languages have
no grammatical gender, with some particular exceptions for domestic animals, people and
foreign words (Turkish) or in some colloquial forms when the gender of the addressee is
expressed for the second person singular pronoun (Basque). Turkish and Basque have
two number types (singular and plural), and in Basque there is also the unmarked
number (undefined or mugagabea). In both Turkish and Basque the cases are expressed
by suffixation.

Basque is an ergative-absolutive language containing 16 cases, meaning that the
grammatical case marks both the subject of an intransitive verb and the object of a
transitive verb. The verb conjugation is also specific for this language: the majority of
the verbs are formed by a combination of a gerund form and a conjugated auxiliary verb.

Turkish has six general cases; nouns and adjectives are not distinguished morpholog-
ically and adjectives can also be used as adverbs without modifications or by doubling
of the word. For verbs there are 9 simple and 20 compound tenses. There is a relatively
small set of core vocabulary and the majority of Turkish words originate from applying
derivative suffixes to nouns and verbal stems.

The two Slavic languages, namely, Russian and Czech, which have a fusional
morphological system, exhibit a highly inflectional morphology and a wide number
of morphological features. Russian belongs to the East Slavic language group, while
Czech is a West Slavic language. These two languages have nominal declension which
involves six main grammatical cases for Russian and seven for Czech. Both languages
distinguish between two number (singular and plural) and three gender types (masculine,
feminine and neuter). Furthermore, the masculine gender is subdivided into animate and
inanimate. Verbs are conjugated for tense (past, present or future) and mood.

Spanish is a Romance language that belongs to Indo-European language family. It
is a fusional language, which has a tendency to use a single inflectional morpheme to
denote multiple grammatical, syntactic or semantic features. Nouns and adjectives in
Spanish have two gender (male, female) and two number types (singular and plural).
Besides, some articles, pronouns and determiners also possess a neuter gender. There are
3 main verb tenses (past, present and future) and each verb has around fifty conjugated
forms. Apart from that, Spanish has 3 verboid forms (infinitive, gerund, past participle),
perfective and imperfective aspects for past, 4 moods and 3 persons.

Finally, English is a Germanic language, also part of Indo-European language family.
It has lower inflection in comparison to previously mentioned languages. Only nouns,
pronouns and verbs are inflected, while the rest of the parts of speech are invariable. In
English animate nouns have two genders (masculine or feminine) and the third person
singular pronouns distinguish three gender types: masculine, feminine, and neuter, while
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for most of the nouns there is no grammatical gender. Nouns have only a genitive case
and personal pronouns are mostly declined in subjective and objective cases. English has
a variety of auxiliary verbs that help to express the categories of mood and aspect and
participate in the formation of verb tenses.

3.2 Datasets

The datasets we used are distributed as part of the data used for the SIGMORPHON
2019 shared task (McCarthy et al. 2019). The source of the original datasets comes from
the Universal Dependencies (UD) project (de Marneffe et al. 2014), but the morphological
annotations are converted from UD annotations to the UniMorph schema (Kirov et al.
2018) with the aim of increasing agreement across languages. As our experiments will
include both in-domain and out-of-domain evaluations, we selected some datasets for
each of the settings.

With respect to in-domain, we chose one corpus per language using the standard
train and development partitions. For Basque we used the Basque Dependency Treebank
(BDT) (Aldezabal et al. 2008), which contains mainly literary and journalistic texts.
The corpus was manually annotated and then automatically converted to UD format.
For Czech we used the CAC treebank (Hladka et al. 2008) based on the Czech Academic
Corpus 2.0. This corpus includes mostly unabridged articles from a wide range of media
such as newspapers, magazines and transcripts of spoken language from radio and TV
programs. The corpus was annotated manually and then converted to UD format. With
respect to English we chose English Web Treebank (EWT) (Silveira et al. 2014). This
corpus includes different Web sources: blogs, various media, e-mails, reviews and Yahoo!
answers. In the EWT corpus the lemmas were assigned by UD-converter and manually
corrected. UPOS tags were also converted to UD format from manual annotations. For
Russian we used GSD corpus, extracted from Wikipedia and manually annotated by
native speakers. In the case of Spanish we selected the GSD corpus as well, consisting of
texts from blogs, reviews, news and Wikipedia. Finally, for Turkish we used ITU-METU-
Sabanci Treebank (IMST) (Sulubacak et al. 2016). It consists of well-edited sentences
from a wide range of domains, manually annotated and automatically converted to UD
format.

For the out-of-domain evaluation setting we picked the test sets of other datasets
included in UniMorph, different from the ones selected for in-domain experimentation. In
the case of Basque, only one corpus was available in the Universal Dependencies project,
so we used the Armiarma corpus which consists of literary critics semi-automatically
annotated using Eustagger (Alegria et al. 1996). For Czech and Turkish we used the PUD
data — part of the Parallel Universal Dependencies treebanks created for the CoNLL 2017
shared task (Zeman et al. 2017). The corpora consist of 1,000 sentences from the news
domain and Wikipedia annotated for 18 languages. The Czech language PUD data was
manually annotated and then automatically converted to UD format. For Turkish the
original data was automatically converted to UD format, but later manually reannotated
(Tirk et al. 2019). In the case of English we used the Georgetown University Multilayer
(GUM) corpus (Zeldes 2017). This corpus presents a collection of annotated Web texts
from interviews, news, travel guides, academic writing, biographies and fiction from such
sources as Wikipedia, Wikinet and Reddit. Its lemmas were manually annotated, while
UPOS tags were converted to UD format from manual annotations. In the case of Russian
we used SynTagRus (Lyashevkaya et al. 2016), which consists of texts from a variety of
genres, such as contemporary fiction, popular science, as well as news and journal articles
from the 1960-2016 period. Its lemmas, UPOS tags and morphological features were
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manually annotated in non-UD style and then automatically converted to UD format.
For Spanish we chose the AnCora corpus (Taulé, Marti, and Recasens 2008), which
contains mainly texts from news. All the elements of this corpus were converted to UD
format from manual annotations.

4. Systems

In this section we present the systems that we will be applying in our investigation.
First, research on the role of fine-grained morphological information for contextual
lemmatization will be performed in-domain using the statistical lemmatizer from the
IXA pipes toolkit (Agerri and Rigau 2016) and Morpheus, the third best system in the
SIGMORPHON 2019 shared task. These two systems were chosen due to several reasons:
(i) both use morphological information as features to learn lemmatization and, (ii) both
systems use SES to represent automatically induced lemma classes; and (iii), they both
address contextual lemmatization as sequence tagging.

In order to investigate whether modern contextual word representations are enough
to learn competitive lemmatizers both in- and out-of-domain, we train baseline models
using Flair (Akbik, Blythe, and Vollgraf 2018), multilingual MLMs mBERT and XLM-
RoBERTa (Devlin et al. 2019; Conneau et al. 2020) as well as language-specific MLMs for
each of the languages: BERTeus for Basque (Agerri et al. 2020), slavicBERT for Czech
(Arkhipov et al. 2019), RoBERTa for English (Liu et al. 2019), Russian ruBERT (Kuratov
and Arkhipov 2019), Spanish BETO (Cariete et al. 2020) and BERTurk for Turkish.? As
with Morpheus and IXA pipes, we treat contextual lemmatization as a sequence tagging
task and fine-tune the language models by adding a single linear layer to the top of the
model. The experiments were implemented using the HuggingFace Transformers API
(Wolf et al. 2020).

4.1 Systems using morphology

IXA pipes is a set of multilingual tools which is based on a pipeline approach (Agerri,
Bermudez, and Rigau 2014; Agerri and Rigau 2016). IXA pipes learns perceptron (Collins
2002) models based on shallow local features combined with pre-trained clustering
features induced over large unannotated corpora. The lemmatizer implemented in IXA
pipes is inspired by the work of Chrupala, Dinu, and van Genabith (2008), where the
model learns the SES between the word form and its lemma. IXA pipes allows to learn
lemmatization using gold-standard or learned morphological tags.

Morpheus is a neural contextual lemmatizer and morphological tagger which consists
of two separate sequential decoders for generating morphological tags and lemmas. The
input words and morphological features are encoded in context-aware vector representa-
tions using a two-level LSTM network and the decoders predict both the morphological
tags and the SES, which are later decoded into its lemma (Yildiz and Tantug 2019).
Morpheus obtained the third best overall result in the SIGMORPHON 2019 shared task
(McCarthy et al. 2019).
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Table 2
List of language-specific models used in the experiments for each of the target languages.

Language ‘ Model ‘ Architecture ‘ Training corpus and number of tokens
Basque BERTeus BERT 35M tokens (Wikipedia) + 191M tokens
(online)
Czech slavicBERT BERT Russian news and Wikipedia in Russian,
Bulgarian, Czech and Polish
English RoBERTa BERT BookCorpus (800M tokens),

CC-News (16,000M tokens),
OpenWebText (8,706M tokens),
CC-Stories (5,300M tokens)

Russian ruBERT BERT Dataset for original BERT
(BookCorpus(800M tokens)),

English Wikipedia (2,500M tokens),
Russian news and Wikipedia for subword

vocabulary

Spanish BETO BERT Wikipedia and OPUS project in Spanish
(3,000M tokens)

Turkish BERTurk BERT OSCAR corpus, Wikipedia, OPUS

corpora, corpus of Kemal Oflaizer
(4,404M tokens total)

4.2 Systems without explicit morphological information

We train a number of models that use modern contextual word representations by
addressing lemmatization as a sequence tagging task. Thus, the input consists of words
encoded as contextual vector representations and the task is to assign the best sequence
of SES to a given input sequence.

Flair is a NLP framework based on a BILSTM-CRF architecture (Huang, Xu, and Yu
2015; Ma and Hovy 2016) and pre-trained language models that leverage character-based
word representations which, according to the authors, capture implicit information about
natural language syntax and semantics. Flair has obtained excellent results in sequence
labelling tasks such as named entity recognition, POS tagging and chunking (Akbik,
Blythe, and Vollgraf 2018). The library includes pre-trained Flair language models for
every language except Turkish.

With respect to the MLMs, we use two multilingual models and 6 language models
trained specifically for each of the languages included in our study. Multilingual BERT
(Devlin et al. 2019) is a transformer-based masked language model, pre-trained on
the Wikipedias of 104 languages with both the masking and next sentence prediction
objectives. Furthermore, we also use XLM-RoBERTa (Conneau et al. 2020), trained on
2.5TB (295K millions of tokens) of filtered CommonCrawl data for 100 languages. XLM-
RoBERTa is based on the BERT architecture but (i) trained only on the MLM task,
(ii) on larger batches (iii) on longer sequences and (iv), with dynamic mask generation.
Thus, multilingual BERT was trained with a batch size of 256 and 512 sequence length
for 1M steps, using both the MLM and NSP tasks. Regarding XLM-RoBERTa, both
versions (base and large) were trained over 1.5M steps with batch 8192 and sequences of
512 length.

2 https://github.com/stefan-it /turkish-bert
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Details about the six language-specific MLMs used are provided in Table 2. BERTeus
(Agerri et al. 2020) is a BERT-base model trained on the BMC Basque corpus, which
includes the Basque Wikipedia and news articles from online newspapers. Apart from
the training data, the other difference from original BERT is the subword tokenization,
which is closer to linguistically interpretable strings in Basque. BERTeus significantly
outperforms multilingual BERT and XLM-RoBERTa in tasks such as POS tagging,
named entity recognition, topic modelling and sentiment analysis.

BERTurk® is a cased BERT-base model for Turkish. This model was trained on a
filtered and sentence segmented version of the Turkish OSCAR corpus (Ortiz Suérez,
Sagot, and Romary 2019), together with Wikipedia, various OPUS corpora (Tiedemann
2016) and data provided by Kemal Oflazer, which resulted in total size of 35GB (4,404M
tokens total).

For Czech we used slavicBERT (Arkhipov et al. 2019), developed by taking multi-
lingual BERT as a basis and further pre-trained using Russian news and the Wikipedias
of four Slavic languages: Russian, Bulgarian, Czech and Polish. The authors also rebuilt
the vocabulary of subword tokens, using the subword-nmt repository.*

RuBERT was developed in a similar fashion as slavicBERT but only with Russian as
target language using the Russian Wikipedia and news corpora (Kuratov and Arkhipov
2019). They generated a new subword vocabulary obtained from subword-nmt which
contains longer Russian words and subwords.

For Spanish we used BETO (Canete et al. 2020) — a BERT-base language model,
trained on a large Spanish corpus. The authors of this model upgraded the initial
BERT model by using the Dynamic Masking technique, introduced in RoBERTa. BETO
performed 2M steps in two different stages: 900K steps with a batch size of 2048 and
maximum sequence length of 128, and the rest of the training with a batch size of 256
and maximum sequence length of 512. We use the version trained with cased data, which
included the Spanish Wikipedia and various sources from the OPUS project (Tiedemann
2012) in a final corpus size of around 3 billion words.

RoBERTa-base is the model chosen for English. RoBERTa (Liu et al. 2019) is an
optimized version of BERT, as commented above. To train this model the authors, apart
from the standard datasets used to train the BERT model, also used the CC-news dataset,
including English news articles from all over the world published between January 2017
and December 2019. The total size of the training data exceeds 160GB of uncompressed
text (more than 30 billion tokens).

4.3 Baselines

We use two models as baselines. First, the system used as a baseline for the SIGMOR-
PHON 2019 shared task (McCarthy et al. 2019), a joint neural model for morphological
tagging and lemmatization presented by Malaviya, Wu, and Cotterell (2019). This system
performs morphological tagging by using a LSTM tagger described in Heigold, Neumann,
and van Genabith (2017) and Cotterell and Heigold (2017). The lemmatizer is a neural
sequence-to-sequence model (Wu and Cotterell 2019) which includes a hard attention
mechanism with a training scheme based on dynamic programming. The tagger and
lemmatizer are connected together by jackknifing (Agi¢ and Schluter 2017), which allows
to avoid exposure bias and improve lemmatization results.

3 https://github.com/stefan-it /turkish-bert
4 https://github.com/rsennrich /subword-nmt/
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The second baseline is the winner of the SIGMORPHON’19 shared task (Straka,
Strakova, and Hajic 2019). UDPipe is a multitask model which jointly learns morpholog-
ical tagging and lemmatization. The system architecture consists of three bidirectional
LSTMs that process the input and softmax classifiers that generate lemmas and mor-
phosyntactic features. Lemmatization is performed as a multiclass classification task,
where the system predicts the correct lemma rule or SES.

5. Experimental Setup

The systems described above were trained on the datasets listed in Section 3.2 using
the following methodology. For the two IXA pipes models (using gold-standard and
learned morphology) we used the default feature set, with and without clustering features,
specified in Agerri and Rigau (2016). The default hyperparameters were also applied to
train Morpheus (Yildiz and Tantug 2019). The input character embedding length d, is
set to 128, the length of the word vectors d. to 1024 and the length of the context-aware
word vectors d. to 2048. Moreover, the length of character vectors in the minimum edit
prediction component d,, and the length of the morphological tag vectors d, are set to
256. The hidden unit sizes in the decoder LSTMs d, and d, are set to 1024. The Adam
optimization algorithm is used with learning rate 3e-4 to minimize the loss (Kingma and
Ba 2015).

Flair is used off-the-shelf with FastText CommonCrawl word embeddings (Grave
et al. 2018) combined with Flair contextual embeddings for each of the languages. The
hidden size of the LSTM is set to 256 with a batch of 16.

The MLMs were fine-tuned for lemmatization as a sequence tagging task by adding a
single linear layer on top of the model being fine-tuned. A grid search of hyperparameters
was performed to pick the best batch size (16, 32), epochs (5, 10, 15, 20, 25) and learning
rate (1e-0, 2e-5, 3e-5, 5e-5). We pick the best model on the development set in terms of
word accuracy and loss. A fixed seed is used to ensure reproducibility of the results.

For multilingual BERT we used a maximum sequence length of 128, batch size 32
and 5e-5 as learning rate while for XLM-RoBERTa we used the same configuration but
with a batch of 16. For Russian we perform grid search on two language-specific models,
namely, ruBERT and slavicBERT. RuBERT obtained the best results with a maximum
sequence length of 128, batch size 16, and a 5e-5 value for learning rate over 15 epochs.
For the rest of the models the best configuration was that of XLM-RoBERTa over 5
epochs for BETO and RoBERTa-base, 10 epochs for BERTeus, 15 epochs for BERTurk
and 20 epochs with slavicBERT for Czech.

6. Experimental Results

In this section we present the experiments to empirically address the following research
questions with respect to the actual role of morphological information to perform contex-
tual lemmatization, namely, (i) is fine-grained morphological information really necessary,
even for agglutinative languages? (ii) are modern context-based word representations
enough to learn competitive contextual lemmatizers without including any explicit mor-
phological signal during training? (iii) do morphologically enriched lemmatizers perform
worse out-of-domain as the complexity of the morphological features increases? (iv)
what is the optimal strategy to obtain robust contextual lemmatizers for out-of-domain
settings? and (v), are current evaluation practices adequate to meaningfully evaluate and
compare contextual lemmatization techniques?
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Unlike the vast majority of previous work on contextual lemmatization, which has
been mostly evaluated in-domain (McCarthy et al. 2019), we also report results in out-
of-domain settings. It should be noted that by out-of-domain we mean to evaluate the
model on a different data distribution from the data used for training (Manning 2011).

First, Section 6.1 studies the in-domain performance of contextual lemmatizers
depending on the type of morphological features used to inform the models during
training. The objective is two-fold: to determine whether complex (or any at all)
morphological information is required to obtain competitive lemmatizers and, secondly,
to establish whether modern contextual word representations and MLMs allow us to
perform lemmatization without any morphological information.

Second, in the out-of-domain evaluation presented in Section 6.2 we analyze the
performance of morphologically informed lemmatizers. Furthermore, comparing them
with contextual lemmatizers developed without an explicit morphological signal would
allow us to obtain a full picture as to what is the best strategy for out-of-domain settings
(the most common application scenario).

6.1 In-domain evaluations

For the first experiment we train the two variants of the IXA pipes statistical system, ixa-
pipe-gs and ixa-pipe-mm (Agerri and Rigau 2016), and one neural lemmatizer, Morpheus
(Yildiz and Tantug 2019). As explained in Section 4, all three require explicit morpho-
logical information and they all apply the shortest edit script (SES) to automatically
induced lemma classes from the training data.

Table 3
List of UniMorph morphological tags used.

Morphological label

UPOS
UPOS+Case+Gender
UPOS+Case+Number

UPOS+Case+Gender+Number
UPOS-+AllFeaturesOrdered

Furthermore, we combined the UniMorph morphological tags to generate labels of
different complexity. Thus, taking UPOS tags as a basis we obtain 5 different mor-
phological tags, as shown in Table 3. The first 4 are combinations of UPOS, case,
gender and number. The last label includes UPOS and every feature present for a
given word in UniMorph in the following order: {UPOS+ Case+Gender+Number-+Rest-
of-the-features}. For some word types, such as prepositions or infinitives, UniMorph only
includes the UPOS tag. In order to illustrate this, Table 4 provides an example originally
in Russian including the information required to train contextual lemmatizers, namely,
the word, some morphological tag, and the lemma.

Putting it all together, Table 5 characterizes the final datasets used for in- and out-
of-domain evaluation. The number of tokens, unique labels per category and unique SES
(calculated using the UDPipe method) illustrate the varied complexity of the languages
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Table 4
An example of the data used to train contextual lemmatizers with morphological information.
Word form Morphological label Lemma
{UPOS+Case+
Gender}
IIpoexT NNOMMASC MIPOEKT
[Project] [project]
CHJIBHO ADV CHJIBHO
[a lot] [a lot]
OTJIMYATICS VMASC OTJIMYATHCS
[differed] [to differ]
or ADP oT
[from] [from]
IIPEIBITY X ADJGEN TIPeIbI Ty Ui
[previous| [previous]
LO/JIOI0K NGENFEM [O/JIOIKA
[submarines] [submarine]

involved.® Thus, those languages with more complex morphology have a higher number
of unique labels that include additional morphological features. The same pattern can
be seen in the amount of lemma classes (SES), significantly larger for the languages with
more complex morphology. In the case of Turkish the low number of lemmas could be
explained by the fact that most Turkish words are formed by applying derivative suffixes
to nouns and verbal stems. Moreover, the core vocabulary in this particular corpus is
rather small. Finally, we decided to order the subtags comprising the full UniMorph
labels as the number of unique labels decreased significantly.

Table 6 reports the in-domain results of training the three systems for the six
languages with the 5 different types of morphological labels. First, the results show
that the neural lemmatizer Morpheus outperforms the statistical lemmatizers for every
language except English. In fact, for languages with more complex morphology, such
as Basque and Turkish, the differences are larger. Second, if we look at the impact of
including fine-grained morphological features it can be seen that no single morphological
tag performs best across systems and languages. Thus, while adding case, number and /or
gender seems to be slightly beneficial, differences in performance are substantial when
training the statistical lemmatizer using gold-standard morphological labels (ixa-pipe-gs)
and especially for languages with more complex morphology (Basque, Russian, Turkish).
Third, the results clearly show that adding every available morphological feature is not
beneficial per se. Fourth, the statistical lemmatizer trained with learned morphological
tags (ixa-pipe-mm) performs significantly worse in every case except for English and
Spanish. Finally, adding a special label ‘no-tag’ with no morphological information shows
that performance decreases significantly for every system and language.

5 Even though it is not required for out-of-domain evaluation, the UniMorph information is not
available for the Basque Armiarma corpus because it is not part of the UniMorph project.
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Table 5
Language complexity reflected in the number of labels according to the augmentation of
morphological features, number of lemma classes and corpus tokens.

number upos+case upos upos SES

language | corpus of | upos +gender | +allfeat. | +allfeat. | (lemma)
tokens +number ord. not.ord. class)

train (BDT) 97,336 15 205 1,143 1,683 1,306

Basque dev (BDT) 12,206 14 148 556 787 432
test (BDT) 11,901 14 153 545 773 428

test (Armiarma) 299,206 - - - - 1,495

train (CAC) 395,043 16 332 1,266 1,784 946

Czech dev (CAC) 50,087 16 298 876 1,129 536
test (CAC) 49,253 15 284 827 1,036 556

test (PUD) 1,930 14 175 288 292 151

train (GSD) 79,989 14 241 851 1,384 553

Russian dev (GSD) 9,526 14 191 435 673 235
test (GSD) 9,874 14 203 455 713 258

test (SynTagRus) | 109,855 15 247 57 1,243 896

train (GSD) 345,545 25 116 287 510 310

Spanish | dev (GSD) 42,545 23 100 208 342 200
test (GSD) 43,497 23 103 222 387 200

test (AnCora) 54,449 15 75 178 309 298

train (EWT) 204,857 16 43 94 173 233

English dev (EWT) 24,470 16 41 88 160 120
test (EWT) 25,527 16 41 85 156 115

test (GUM) 8,189 17 42 72 124 80

train (IMST) 46,417 15 124 1,541 1,897 211

Turkish dev (IMST) 5,708 15 95 605 748 106
test (IMST) 5,734 16 100 589 725 104

test (PUD) 1,795 15 66 217 220 59

Summarizing, in-domain performance for high-inflected languages improves when
some fine-grained morphological attributes (case and number or gender) are used to train
the statistical lemmatizers. However, for English and Spanish using UPOS seems to be
enough. Thus, in the case of neural lemmatization with Morpheus (the best of the models
using morphological information), we can see that no substantial gains are obtained by
adding fine-grained morphological features to UPOS tags, not even for agglutinative
languages such as Basque or Turkish.

This point is reinforced by the results of computing the McNemar test of statistical
significance to establish whether the differences in the results obtained by Morpheus (the
best among the models trained with morphology) informed only with UPOS labels or
with the best morphological label (as by Table 6 above) are statistically significant or not
(null hypothesis). The result of the test showed that for every language the differences
were not significant (o = .05, with 0.936 p-value for Basque, 0.837 for Czech, 0.511 for
Russian and 0.942 for Spanish).
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Table 6

In-domain lemmatization results on the development sets for systems that use morphology to
train contextual lemmatizers. ixa-mm: IXA pipes with learned morphological tags; ixa-gs: IXA
pipes with gold standard morphology; morph = Morpheus; UCG: UPOS+Case+Gender, UCN:
UPOS+Case+Number, UCGN:UPOS+Case+Gender+Number: UALLo:
UPOSAllFeaturesOrdered.

English

| no-tag UPOS UCG UCN UCGN UAllo

ixa-mm - 98.97 98.97 99.03 98.97 98.86

ixa-gs 96.98 99.51 99.49 99.58 99.59 99.65

morph 97.60 98.20 98.12 98.13 98.19 98.14
Spanish

ixa-mm - 98.75 98.74 98.71 98.78 98.74

ixa-gs 98.36 98.82 98.78 98.82 98.80 98.88

morph 98.17 98.09 98.93 98.96 98.92 98.91
Russian

ixa-mm - 94.85 95.37 95.69 95.50 95.53

ixa-gs 91.85 95.05 96.95 96.45 96.99 97.04

morph 96.50 96.92 96.91 97.10 97.18 97.24
Basque

ixa-mm - 93.19 93.22 93.14 93.30 93.49

ixa-gs 91.68 93.50 94.33 94.58 94.58 96.50

morph 95.48 96.30 96.43 96.54 96.37 96.42
Czech

ixa-mm - 97.76 97.17 97.29 97.10 97.10

ixa-gs 95.64 97.68 98.10 97.93 98.09 98.20

morph 98.37 98.78 98.84 98.83 98.82 98.80
Turkish

ixa-mm - 84.83 84.51 85.06 85.06 83.95

ixa-gs 85.97 88.81 88.89 89.14 89.14 90.52

morph 96.04 96.41 96.53 95.95 96.27 96.50

Taking this into consideration, the next natural step is to consider whether it is pos-
sible to learn good contextual lemmatizers without providing any explicit morphological
signal during training. Previous work on probing contextual word representations and
transformer-based masked language models (MLMs) suggests that such models implicitly
encode information about part-of-speech and morphological features (Manning et al.
2020; Akbik, Blythe, and Vollgraf 2018; Conneau et al. 2018; Belinkov et al. 2017).
Following this, for this experiment we fine-tune various well-known multilingual and
monolingual language models (detailed in Section 4) by using only the word forms and
the automatically induced shortest edit scripts (SES) as implemented by UDPipe (Straka,
Strakova, and Hajic 2019).

Figure 2 reports the results. From left-to-right, the first three bars correspond to
the best statistical and Morpheus models using explicit morphological information as
previously reported in Table 6. The next four list the results from Flair, mBERT,
XLM-RoBERTa-base and a language-specific monolingual model (none of these four use
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Figure 2

Overall in-domain lemmatization results on the test data for models trained with and without
explicit morphological features; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque - BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

any explicit morphological signal) whereas base (dark purple) refers to the system of
Malaviya, Wu, and Cotterell (2019), employed as a baseline for the SIGMORPHON 2019
shared task (McCarthy et al. 2019). For state-of-the-art comparison, the last column on
the right provides the results from UDPipe (Straka, Strakovd, and Hajic 2019) (light
purple color). Finally, the dark blue bars represent the best result for each language
without considering either the baseline system or UDPipe.

The first noticeable trend is that every model beats the baseline except the IXA
pipes-based statistical lemmatizers, which perform over the baseline and comparatively
to the other models for English and Spanish only, the languages with the less complex
morphology.

The second and, perhaps, most important fact is that the four models (Flair, mBERT,
XLM-RoBERTa and mono) which do not use any morphological signal for training, obtain
a remarkable performance across languages, XLM-RoBERTa-base being the best overall,
even better than language-specific monolingual models. In fact, XLM-RoBERTa-base
outperforms Morpheus for 4 out of the 6 languages, a neural model which was the third
best system in the SIGMORPHON 2019 benchmark and which uses all the morphological
information available in the UniMorph data. The McNemar test of significance shows that
the differences in results obtained by Morpheus and XLM-RoBERTa are statistically
significant (o = .05) for Russian, Spanish and English (in XLM-RoBERTa’s favour), and
for Basque and Turkish (Morpheus over XLM-RoBERTa).
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An additional observation is our XLM-RoBERTa-base lemmatization models perform
competitively with respect to UDPipe, which obtains the best results for 5 out of the 6
languages included in our study. UDPipe’s strong performance is somewhat expected as
it was the overall winner of the SIGMORPHON 2019 lemmatization task. It should be
noted that UDPipe is a rather complex system consisting of a multitask model to predict
POS tags, lemmas and dependencies by applying three shared bidirectional LSTM layers
which take as input a variety of word and character embeddings, the final model being
an ensemble of 9 possible embedding combinations. However, the results obtained by the
language models we trained without any explicit morphological signal, such as XLM-
RoBERTa-base, are based on a simple baseline setting, where the transformer models
are fine-tuned using the automatically induced SES as the target labels in a token
classification task. These results seem to confirm that, as it was the case for POS tagging
and other tasks (Manning et al. 2020), contextual word representations implicitly encode
morphological information which made them perform strongly for lemmatization.

However, we can see that for agglutinative languages such as Basque and Turkish, the
neural models using explicit morphological features (Morpheus, Malaviya et al. 2019 and
UDPipe) still outperform those without it (although for Basque the differences are much
smaller). Still, the overall results show that, apart from Basque and Turkish, differences
between XLM-RoBERTa and the best model for each language are rather minimal.
This demonstrates that it is possible to generate competitive contextual lemmatization
without any explicit morphological information using a very simple technique, although a
more sophisticated approach or larger language model may be required to be competitive
with the state-of-the-art currently represented by UDPipe.

6.2 Out-of-domain evaluation

Although lemmatizers are mostly used out-of-domain, the large majority of the exper-
imental results published so far do not take this issue into account when evaluating
approaches to contextual lemmatization. In this section we empirically investigate the
out-of-domain performance of the lemmatizers from the previous section to establish
whether: (i) using fine-grained morphological information causes cascading errors in the
lemmatization performance; (ii) whether the lack of morphological information helps to
obtain more robust lemmatizers across domains.

For a better comparison, Table 7 presents both the in-domain results presented in
the previous section together with their corresponding out-of-domain performance on the
datasets presented in Section 3.

Table 7 allows to see the general trend in performance across domains and with
respect to the type of morphological information used. First, and as it could be expected,
out-of-domain performance is substantially worse for every evaluation setting and partic-
ularly significant for highly-inflected languages. Second, in terms of the type of morpho-
logical label, there are no clear differences between the models using just UPOS tags or
those using more fine-grained information, the exception being Russian and Turkish with
the ixa-pipe-mm system, for which the highest result with {UPOS+Case+Number} is
around 1 point in word accuracy better than UPOS. Furthermore, there is not a common
type of morphological information that works best across languages. Third, while the
statistical lemmatizers are competitive for Spanish and English, they are clearly inferior
for Basque and Turkish. Finally, when looking at the results in terms of the models using
gold-standard morphological annotations (ixa-pipe-gs and Morpheus) it is interesting
that they degrade less out-of-domain than the model using learned morphological tags
for most of the cases except for Russian. Summarizing, we can conclude that adding
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Table 7

In-domain and out-of-domain test results for systems trained with explicit morphological
information: ixa-mm: IXA pipes with learned morphological tags; ixa-gs: IXA pipes with gold
standard morphology; morph: Morpheus; UCG: UPOS+Case+Gender, UCN:
UPOS+Case+Number, UCGN: UPOS+Case+Gender+Number: UALLo:
UPOSAllFeaturesOrdered. Underline: Best model per language and type of label; *: best
overall per language.

| IN-DOMAIN OUT-OF-DOMAIN
| NO TAG
ixa-mm ixa-gs morph ixa-mm ixa-gs morph
en - 96.34 97.51 - 90.40 92.47
es - 98.53 98.17 - 89.75 89.70
ru - 92.81 95.31 - 83.95 86.84
eu - 90.61 95.69 - 85.64 88.25
cs - 96.37 98.31 - 91.50 91.61
tr - 87.11 95.62 - 77.16 84.07
| UPOS
ixa-mm ixa-gs morph ixa-mm ixa-gs morph
en 99.11* 98.91 98.10 95.38* 95.25 92.92
es 98.91 98.76 98.94 97.53 97.41 90.29
ru 94.36 93.74 96.20 90.00 89.40 87.59
eu 93.11 92.29 96.39 85.22 86.79 88.97
cs 97.86 97.28 98.75 92.33 93.68 91.66
tr 84.65 87.76 96.44* 79.22 81.67 84.96*
| UCG
ixa-mm ixa gs morph ixa-mm ixa-gs morph
en 99.10 98.92 97.99 95.20 95.24 92.97
es 98.94 98.70 98.98 97.54 97.43 90.31
ru 94.85 93.30 96.21 90.97 89.33 87.67
eu 92.65 92.39 96.34 85.23 86.74 89.09
cs 97.29 96.64 98.76* 91.61 91.35 91.92
tr 85.09 87.09 96.18 80.06 81.23 84.74
| UCN
ixa-mm ixa-gs morph ixa-mm ixa-gs morph
en 99.06 98.87 98.01 95.16 95.16 92.86
es 98.92 98.75 99.02* 97.56 97.44 90.35
ru 95.07 93.70 96.20 91.00* 89.60 87.58
eu 93.03 92.35 96.39 85.47 86.36 89.03
cs 97.44 96.87 98.71 91.04 92.07 92.23*
tr 85.52 87.18 96.11 80.33 81.00 84.40
| UCGN
ixa-mm ixa-gs morph ixa-mm ixa gs morph
en 99.08 98.96 97.99 95.21 95.15 92.95
es 98.89 98.71 98.97 97.59* 97.44 90.38
ru 95.00 93.08 96.44* 90.80 89.13 87.66
eu 93.03 92.28 96.39 85.38 86.55 88.86
cs 97.17 96.68 98.70 91.71 91.50 91.97
tr 85.52 87.18 96.20 80.33 81.00 84.46
| UAllo
ixa-mm ixa-gs morph ixa-mm ixa-gs morph
en 99.04 98.95 98.06 95.08 95.13 93.15
es 98.86 98.74 99.00 97.54 97.45 90.34
ru 94.75 93.22 96.30 90.88 88.66 87.57
eu 93.41 94.06 96.50" 85.33 86.31 89.11*
cs 97.03 96.63 98.70 91.19 91.81 92.02
tr 84.90 86.57 96.22 79.39 80.50 84.96
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Figure 3
Overall in-domain and out-of-domain results.

fine-grained morphological information to UPOS does not in general result in better
out-of-domain performance.

Following this, we would like to evaluate the out-of-domain performance when not
even UPOS labels are used for training. From what we have seen in-domain, the systems
that operate without morphology achieve competitive results with respect to the models
using morphological information. Figure 3 provides an overview of both the in- and out-
of-domain results obtained for both types of systems, confirming this trend. Thus, it is
remarkable that the XLM-RoBERTa model scores best out-of-domain for Turkish and
Czech, and a very close second in Russian. The results for Spanish and English deserve
further analysis, as the IXA pipes statistical models clearly outperform every other system
for these two languages, with the differences around 7 points in word accuracy.
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Figure 4
Overall in- and out-of-domain results in the reversed setting.
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Figure 4% presents the reversed results of those presented in Figure 3, namely, the
test set of the in-domain corpora becomes the out-of-domain test data while the models
are fine-tuned on the training split of the out-of-domain data. Doing this experiment
allows to discard that the out-of-domain behaviour exhibited in previous results could
be due to differences in size between the training in-domain data and the testing out-of-
domain test sets. Good examples of this are Russian and Spanish for which SynTagRus
and AnCora are used as in-domain data in the reversed setting. These two datasets
are much larger than the GSD corpora for those languages (used as in-domain data in
the original setting). Thus, results in the reversed setting demonstrate that: (i) out-of-

6 Basque is not present in this evaluation due to the fact that the Armiarma corpus does not include
UniMorph annotations.
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domain performance worsens substantially regardless of the language and model, (ii)
language models fine-tuned without explicit morphological information outperform in-
domain every other model for all languages except Turkish, and (iii), the out-of-domain
results of XLM-RoBERTa-base are the best for Russian and Czech and similar to other
models in English and Spanish.

In any case, Figures 3 and 4 show that the results of every model significantly degrade
when evaluated out-of-domain, the most common application of lemmatizers. Thus, even
for high-scoring languages such as English and Spanish, out-of-domain performance
worsens between 3 and 5 points in word accuracy. For high-inflected languages the
differences are around 8 for Basque and more than 10 for Turkish.

Given that pre-trained language models such as XLM-RoBERTa-base can be lever-
aged to learned competitive lemmatizers without using any explicit morphological signal,
we propose a final experiment to address the following two additional research questions.
First, will lemmatization results get closer to the state-of-the-art by using a larger
transformer-based model such as XLM-RoBERTa-large? Second, can we improve the
performance of a language model such as XLM-RoBERTa by adding morphological
information during fine-tuning?

Table 8
In- and out-of-domain results for XLM-RoBERTa-base and XLM-RoBERTa-large models with

and without morphological features during training.

| xlm-r base xlm-r large
| in-domain out-of-domain in-domain out-of-domain
without with without with without with without with
morph.  morph. | morph. morph. | morph. morph. | morph. morph.
en 98.76 98.74 93.56 93.72 98.85 98.92 93.82 93.86
es 99.08 99.10 90.26 90.42 99.12 99.15 90.48 90.53
eu 95.98 96.45 88.15 88.60 96.66 96.70 88.75 88.81
ru 97.08 97.25 90.53 90.92 97.63 97.96 91.60 91.71
cz 99.25 99.32 95.18 94.72 99.40 99.23 95.42 96.06
tr 95.38 95.19 84.90 85.34 96.30 96.13 85.18 85.40

Table 8 shows the results of experimenting with XLM-RoBERTa-base and XLM-
RoBERTa-large to learn lemmatization as a sequence labelling task with and without
adding morphology as explicit handcrafted features. For each language we pick the best
morphological configuration from Table 7 and encode the morphological labels as feature
embeddings. Both feature and encoded text embeddings are then sent into a softmax layer
for sequence labelling (Wang et al. 2022). The first observation is that the large version
of XLM-RoBERTa obtains the best results both in- and out-of domain. It is particularly
noteworthy that fine-tuning XLM-RoBERTa-large with only the SES classes helps to
outperform any other model for every language and evaluation setting. Furthermore,
adding morphology as a feature seems to be beneficial. In fact, the morphologically
informed models are the best in 4 out of 6 in-domain evaluations and for all 6 out-of-
domain cases.

We compute the McNemar test to establish whether the differences obtained with and
without morphological features are actually statistically significant. It turns out that for
XLM-RoBERTa-large results are rather mixed. Thus, only for Russian (p-value 0.003)
and Czech (0.000) are the results significant at o = .05. For Turkish and Basque the
results are not conclusive (p-value 0.0495) while for the rest the null hypothesis cannot
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be rejected (0.423 for Spanish, 0.242 in English and 0.547 in Basque). Regarding XLM-
RoBERTa-base, in 4 out of 6 languages the results are statistically significant at oo = .01
(the McNemar test), failing to reject the null hypothesis for Russian and Turkish.

To sum up, our experiments empirically demonstrate that fine-grained morphological
information to train contextual lemmatizers does not lead to substantially better in- or
out-of-domain performance, not even for languages of varied complex morphology, such
as Basque, Czech, Russian and Turkish. Thus, only for Basque and Turkish did Morpheus
(using UPOS tags) outperformed XLM-RoBERTa models.

Taking this into account, and as previously hypothesized for other NLP tasks
(Manning et al. 2020), modern contextual word representations seem to implicitly capture
morphological information valuable to train lemmatizers without requiring any explicit
morphological signal. We have proved this by training off-the-shelf language models to
perform lemmatization as a token classification task obtaining state-of-the-art results for
Russian and Czech, and very close performance to UDPipe in the rest. Finally, statistical
models are only competitive to perform contextual lemmatization on languages with a
morphology on the simple side of the complexity spectrum, such as English or Spanish.

Thus, the results indicate that XLM-RoBERTa-large is the optimal option to learn
lemmatization without any explicit morphological signal for every language and evalua-
tion setting.

7. Discussion

In this paper we performed a number of experiments to better understand the role
of morphological information to learn contextual lemmatization. Our findings can be
summarized as follows: (i) fine-grained morphological information does not help to
substantially improve contextual lemmatization, not even for high-inflected languages;
using UPOS tags seems to be enough for comparable performance; (ii) contextual word
representations such as those employed in transformer and Flair models seem to encode
enough implicit morphological information to allow us to train good performing lemma-
tizers without any explicit morphological signal; (iii) the best-performing lemmatizers
out-of-domain are those using either simple UPOS tags or no morphology at all; (iv)
evaluating lemmatization on word accuracy is not the best strategy; results are too high
and too similar to each other to be able to discriminate between models. By using word
accuracy we are assigning the same importance to cases in which the lemma is equivalent
to the word form (e.g. ‘the’) as to complex cases in which the word form includes case,
number and/or gender information (e.g, ‘medikuarenera’, which in Basque means “to the
doctor”, with its corresponding lemma ‘mediku’). We believe that this may lead to a high
overestimation in the evaluation of the lemmatizers.

In this section, we address some remaining open issues with the aim of understanding
better the main errors and difficulties still facing lemmatization. First, we discuss the
convenience of using an alternative metric to word accuracy. Second, we analyze the
performance of XLM-RoBERTa-base by evaluating accuracy per SES. Third, we examine
the generalization capabilities of XLM-RoBERTa-base by computing word accuracy for
in-vocabulary and out-of-vocabulary words. We also discuss any issues regarding test data
contamination. Finally, we perform some error analysis on the out-of-domain performance
of the XLM-RoBERTa-base model for Spanish, to see why it is different to the rest of
the languages, as illustrated by Figure 3.
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7.1 Sentence Accuracy

Looking at the in-domain results for lemmatization reported in the previous sections
and in the majority of recent work (Malaviya, Wu, and Cotterell 2019; McCarthy et al.
2019; Yildiz and Tantug 2019; Straka, Strakovd, and Hajic 2019), with word accuracy
in-domain scores around 96 or higher, it is not surprising to wonder whether contextual
lemmatization is a solved task. However, if we look at the evaluation method a bit more
closely, things are not as clear as they seem. As it has been argued for POS tagging
(Manning 2011), word accuracy as an evaluation measure is easy because you get many
free points for punctuation marks and for the many tokens that are not ambiguous with
respect to its lemma, namely, those cases in which the lemma and the word form are
the same. Following this, a more realistic metric might consist of looking at the rate of
getting the whole sentence correctly lemmatized, just as it was proposed for POS tagging
(Manning 2011).

Figure 5 reports the sentence accuracy of the six languages we used in our exper-
iments both for in- and out-of-domain. In contrast to the word accuracies reported in
Figure 3, we can see that the corresponding sentence accuracy results drop significantly.
In addition to demonstrating that lemmatizers have a large margin of improvement,
sentence accuracy allows us to better discriminate between different models. We can see
this phenomenon in the English and Spanish results. Thus, while every model obtained
very similar in-domain word accuracy in Spanish, using sentence accuracy helps to
discriminate between the statistical and the neural lemmatizers. Furthermore, it also
shows that among the neural models XLM-RoBERTa clearly outperforms the rest of the
models by almost 1 percent.

The effect of sentence accuracy for the in-domain evaluation is vastly magnified when
considering out-of-domain performance, with the extremely low scores across languages
providing further evidence of how far lemmatization remains from being solved.

7.2 Analyzing word accuracy per SES

The next natural step in our analysis is identifying which specific cases are most difficult
for lemmatizers. In order to do so, we look at the word accuracy for each of the SES labels
automatically induced from the data. In order to illustrate this point, we took XLM-
RoBERTa-base as an example use case and analyze their predictions for the languages
which could be inspected in-house, namely, Basque, English, Spanish and Russian. Thus,
Table 9 presents examples and results for the 10 most frequent SES for each of these 4
languages development sets.

As we can see in Table 9, the most common lemma transformation to be learned is
based on the edit script “do nothing”, namely, the lemmatizer needs to learn that the
lemma and the word have the same form. It is also interesting to see how the ratio of
such lemma type changes across languages, from English, where such cases are observed
in almost 77% of the cases to Basque, where only half of the lemmas correspond to this
rule. However, in terms of word accuracy, the results are remarkably similar for all 4
languages, in the range of 99-99.30%. This demonstrates that the traditional evaluation
method greatly overestimates the lemmatizers’ performance.

By looking at other specific cases, we can see that in English problematic examples
to learn are those related to the casing of some characters (e.g. Martin — Martin, NASA
— NASA). Other noticeable issue refers to the verbs in gerund form (e.g. trying — try,
driving — drive).
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Czech
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ixa-mm ixa-gs

I OoD SynTagRus
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English

B n-domain

ixa-mm ixa-gs

s OoD PUD

morph flair mBERT xIm-r mono

Spanish

m In-domain

88.27

ixa-mm ixa-gs

s OoD GUM

morph flair

Turkish

B n-domain

ixa-mm ixa-gs

m OoD AnCora

morph flair mBERT

Basque

m In-domain

ixa-mm

ixa-gs

s OoD PUD

morph flair mBERT xIm-r mono

B n-domain

ixa-mm

ixa-gs

B OoD Armiarma

morph flair mBERT

Figure 5

Sentence accuracy results for in- and out-of-domain settings.

With respect to Spanish interesting difficult lemmas are observed with articles in
feminine form (e.g. la — el, una — uno), where the masculine form is considered the
canonical form or lemma, and feminine articles and adjectives should be lemmatized by
changing the gender of the word from female to male.

In Russian the most challenging case corresponds to the lemmatization of the nouns
that end with a soft sign » with the word accuracy for this SES as low as 93.94%. The
possible reason of such low accuracy could be the absence of a specific grammar rule
that defines the gender of such nouns and, therefore, the termination these nouns have in
different cases. The second lowest accuracy among the 10 most popular SES in Russian
is for adjectives, cases in which to obtain the lemma one should delete the last character
of the word and add a letter it (pronounced as iy kratkoe, short y), that in Russian
determines the suffix for some masculine nouns and adjectives in singular and nominative
case. The words could be in different cases and genders, so it is necessary to know such
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Table 9

10 most frequent SES, brief description, corresponding word accuracy, weight (in %) in the
corpus and examples of words and their lemmas for English, Spanish, Russian and Basque;
SES are computed following UDPipe’s method (Straka, Strakova, and Hajic 2019).

| SES | Casing | Edit script | Wace | % | Examples
10;d i+ all low | do nothing 99.29 76.87% | positive—positive
10111;d 1+ 1st up | do nothing 96.29 6.97% | Martin—Martin
10;di-+ all low | remove last ch 98.58 5.52% | things—thing
10;abe all low | ignore form, use be 99.81 2.02% is—be
en | [0;di—+ all low | remove 2 last ch 97.42 1.52% does—do
105d 1 —+ all low | remove 3 last ch 96.45 1.10% | trying—try
101 ]-1;d 1+ all up do nothing 94.22 0.68% | NASA—NASA
10;d—+bi+ all low | first 2 char to b 99.33 0.59% | are—be
10d i -+vte+ all low | last ch to ve 100.00 0.51% has—have
J0;d i —+e+ all low | 3 last ch toe 96.23 0.42% driving—drive
J0sd i+ all low | do nothing 99.36 72.40% | acuerdo—acuerdo
10:d -+ all low | del last ch 97.22 5.29% estrellass—estrella
10;d+ei-+ all low | add e, del last ch 96.73 3.36% la—el
10:di-+o+ all low | del last ch, add o 96.21 2.37% | una—uno
es | JO;d+ei—+ all low | add e, del 2 last ch 99.78 2.13% los—el
10di—+ all low | del 2 last ch 97.36 1.40% | flores—flor
10;aél all low | ignore form, use él 99.83 1.32% | se—él
10;d i +r+ all low | addr 100.00 | 0.91% | hace—hacer
10:d i +o+ all low | add o 97.73 0.91% | primer—primero
10;d i -+a+r+ all low | del last ch, add ar 98.07 0.83% desarroll6—desarollar
105d i+ all low | do nothing 99.16 57.80% | IlerepGypr—IlerepOypr
10:d i -+ all low | del last ch 97.67 6.97% | 1epKOBBIO—IIEPKOBb
10;d i -+a+ all low | del last ch, add a 96.65 3.32% SKOHOMUKY —9KOHOMHUKA,
105d 1 -+#+ all low | del last ch, add it 96.08 3.10% rOPOACKOE—TOPOICKOM
ru | J0;di—+ all low | del 2 last ch 99.03 2.10% | crpamamu—cTpaHa
10:di-+et all low | del last ch, add e 98.04 2.07% | mopa—smope
10sd i -+a+ all low | del last ch, add s 97.83 1.86% | mcropmwo—ucropus
J0sd i -414b+ all low | del last ch, add T8 98.88 1.81% MOJIyYUJI—TIOJIy YU Th
10;d i -+b+ all low | del last ch, add b 93.94 1.67% | cenrabpa—rcenTabpnb
10;di—+1+5+ | all low | del 2 last, add s 98.10 1.60% | OBLIE—6BITD
105d i+ all low | do nothing 99.05 | 49.63% | sartu—sartu
10;d 1 — all low | remove 2 last ch 97.72 9.93% librean—libre
10;d -+ all low | remove last ch 96.27 6.54% korrikan—korrika
105d 1 —+ all low | remove 3 last ch 93.24 3.60% aldaketarik—aldaketa
eu | 101l1;di+ 1st up do nothing 98.54 3.46% MAPEI—Mapei
10sd i —+ all low | del 4 last ch 93.00 2.52% | lagunaren—lagun
10101;di—+ 1st up del 2 last ch 95.54 1.88% Egiptora—Egipto
10;d-+i+z all low | del 1st ch, 100.00 1.38% | da—izan
| +n+ add iz,n
10111;d -+ 1st up | del last ch 90.08 1.10% | Frantziak—Frantzia

information for correct lemmatization (e.g. ropomckoe — ropozckoii (neutral gender,
nominative case), cemeiinbim — cemeitubiii (masculine gender, instrumental case)).

Finally, for Basque the most problematic cases with a rather low word accuracy
of only 90.08% can be found among the nouns in ergative (e.g. Frantziak — Frantzia)
or locative cases (e.g. Moskun (in Moscow) — Mosku, Katalunian (in Catalonia) —
Katalunia). The other two most difficult SES occur when the word forms are in possessive
case (e.g. lagunaren — lagun) and for nouns in indefinite form (e.g., aldaketarik (change)
— aldaketa).
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It should be noted that an extra obstacle to improving some of these difficult cases is
the low number of samples available. Nonetheless, this analysis shows that lemmatizers
still do not properly learn to lemmatize relatively common word forms.

7.3 Generalization Capabilities of Language Models

In this subsection we aim to analyze the generalization capabilities of a MLM such as
XLM-RoBERTa-base in the lemmatization task. More specifically, we will discuss two
issues: (i) whether MLMs simply memorize the SES lemma classes during fine-tuning
and (ii) whether the good performance of MLMs in this task might be due to some test
data contamination.”

In order to address the first point, we evaluate the performance of XLM-RoBERTa-
base, fine-tuned without morphological features, for those words seen during fine-tuning
(in-vocabulary words) with respect to out-of-vocabulary occurrences.

Table 10

Word accuracy for in-vocabulary and out-of-vocabulary words for XLM-RoBERTa-base model
(original setting). Corpora: English - EWT (in-domain), GUM (out-of-domain); Spanish -
GSD (in-domain), AnCora (out-of-domain); Basque - BDT (in-domain), Armiarma
(out-of-domain); Russian - GSD (in-domain), SynTagRus (out-of-domain); Czech - CAC
(in-domain), PUD (out-of-domain); Turkish - IMST (in-domain), PUD (out-of-domain).

| in-domain out-of-domain
in-vocabulary out-of- in-vocabulary out-of-
vocabulary vocabulary

en 97.25 90.55 92.56 81.11
es 98.06 93.54 82.53 60.07
eu 96.65 82.85 87.92 71.08
ru 98.62 90.23 89.19 77.50
cz 99.21 93.28 98.08 88.66
tr 97.84 84.54 92.34 68.39

Table 11

Word accuracy for in-vocabulary and out-of-vocabulary words for XLM-RoBERTa-base model
(reversed setting). Corpora: English - GUM (in-domain), EWT (out-of-domain); Spanish -
AnCora (in-domain), GSD (out-of-domain); Russian - SynTagRus (in-domain), GSD
(out-of-domain); Czech - PUD (in-domain), CAC (out-of-domain); Turkish - PUD
(in-domain), IMST (out-of-domain).

| in-domain | out-of-domain
in-vocabulary out-of- in-vocabulary out-of-
vocabulary vocabulary
en 96.48 88.95 89.84 75.94
es 98.54 93.11 81.71 47.10
ru 98.70 92.28 89.22 59.13
cz 96.26 83.51 90.42 82.35
tr 90.11 70.15 88.63 58.79

7 https://hitz-zentroa.github.io/lm-contamination /
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Tables 10 and 11 report the results for both original and reversed settings and in-
and out-of-domain evaluations. It is noticeable that the model performs very well on out-
of-vocabulary words, also in the out-of-domain evaluation, which would seem to indicate
that XLM-RoBERTa is generalizing beyond the words seen during training. This seems to
be confirmed also by looking at the Spanish and Russian results. It should be remembered
that, while in the reversed setting the training data for Spanish (AnCora, 500K tokens)
and Russian (SynTagRus, 900K words) is much larger than in the original setting (both
GSD), the obtained results reflect roughly the same trend.

Finally, we should consider whether a MLM such as XLM-RoBERTa has already
seen the datasets we are experimenting with during pre-training, namely, whether XLM-
RoBERTa has been contaminated.® First, it should be noted that CC-100, the corpus
used to generate XLM-RoBERTa, was constructed by processing the CommonCrawl
snapshots from between January and December 2018. Second, the SIGMORPHON data
we are using was released in 2019° with the test data including gold standard lemma
and UniMorph annotations being released in April 2019. Third and most importantly,
XLM-RoBERTa does not see the lemmas themselves during training or inference, but
the SES classes we automatically generate in an ad-hoc manner for the experimentation.
The datasets containing both the words and the SES classes used have not been yet made
publicly available.

Based on this, it is possible to say that XLM-RoBERTa seems to generalize over
unseen words and that its performance is not justified by any form of language model
contamination.

7.4 Analyzing Spanish out-of-domain results

In Section 6.2 we saw that out-of-domain performance of transformer-based models for
Spanish was not following the pattern of the rest of the languages. Instead, they were 6-7%
worse than the results obtained by the IXA pipes statistical lemmatizers (ixa-pipe-mm
and ixa-pipe-gs). By checking the most common error patterns of XLM-RoBERTa-base,
we found out that most of the performance loss was caused by inconsistencies in the
manual annotation of lemmas between the data used for in-domain and out-of-domain
evaluation. More specifically, the GSD Spanish corpus included in UniMorph wrongly
annotates lemmas for proper names such as Madrid, London or Paris entirely in lowercase,
namely, madrid, london and paris. However, the AnCora Spanish corpus used for out-of-
domain evaluation correctly annotates these cases specifying their corresponding lemmas
with the first character in uppercase. This inconsistency results in 3781 examples of
proper names in the AnCora test set which are all lemmatized following the pattern seen
during training with the GSD training set. Consequently, the word accuracy obtained by
the model for this type of examples in the AnCora test set is 0%. In order to confirm this
issue, we corrected the wrongly annotated proper names in the GSD training data, fine-
tuned again the model and saw the out-of-domain performance of XLM-RoBERTa-base
go up from 90.26% to 96.75%, a more consistent result with respect to the out-of-domain
scores for the other 5 languages.

This issue manifests the importance of consistent manual annotation across corpora
from different domains in order to fairly evaluate out-of-domain performance of contex-
tual lemmatizers.

8 https://hitz-zentroa.github.io/lm-contamination/blog/
9 First GitHub commit December 19, 2018.
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8. Concluding Remarks

Lemmatization remains an important natural language processing task, especially for
languages with high-inflected morphology. In this paper we provide an in-depth study on
the role of morphological information to learn contextual lemmatizers. By taking a lan-
guage sample of varied morphological complexity, we have analyzed whether fine-grained
morphological signal is indeed beneficial for contextual lemmatization. Furthermore, and
in contrast to previous work, we also evaluate lemmatizers in an out-of-domain setting,
which constitutes, after all, their most common application use. Our results empirically
demonstrate that informing lemmatizers with fine-grained morphological features during
training is not that beneficial, not even for agglutinative languages. In fact, modern con-
textual word representations seem to implicitly encode enough morphological information
to obtain good contextual lemmatizers without seeing any explicit morphological signal.
Finally, good out-of-domain performance can be achieved using simple UPOS tags or
without any explicit morphological signal.

Therefore, our results suggest that an optimal solution among all the options
considered would be to develop lemmatizers by fine-tuning a large MLM such as XLM-
RoBERTa-large without any explicit morphological signal. Addressing lemmatization
as a token classification task results in highly competitive and robust lemmatizers with
results over or close to the state-of-the-art obtained with more complex methods (Straka,
Strakovd, and Hajic 2019).

Furthermore, we have discussed current evaluation practices for lemmatization,
showing that using simple word accuracy is not adequate to clearly discriminate between
models, as it provides a deceptive view regarding the performance of lemmatizers. An
additional analysis looking at specific lemma classes (SES) has shown that many common
word forms are still not properly predicted. The conclusion is that lemmatization remains
a challenging task. Future work is therefore needed to improve out-of-domain results.
Furthermore, it is perhaps a good time to propose an alternative word-level metric to
evaluate lemmatization that, complemented with sentence accuracy, may provide a more
realistic view of the performance of contextual lemmatizers.
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Appendix A: Detailed Lemmatization Results

Table 1

Overall in-domain lemmatization results for models trained with and without explicit
morphological features; monolingual transformers: Russian - ruBERT, Czech - slavicBERT,
Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

ixa- ixa-gs  morph flair mBERT xlm-r mono base UDPipe
mm

en 99.06 98.95 98.10 98.58 98.56 98.76 98.49 97.68 99.01
es 98.89 98.74 99.02 99.02 99.01 99.08 99.04 98.42 99.31
ru 95.07 93.22 96.30 96.18 96.70 97.08 96.55 95.67 97.77
eu 93.41 94.06 96.39 96.09 95.71 95.98 95.51 96.07 97.14
cz 97.86 96.63 98.76 98.87 99.07 99.25 99.01 97.82 99.31
tr 85.52 86.57 96.18 93.98 95.15 95.38 95.20 96.41 96.84

Table 2

Overall out-of-domain lemmatization results for models with and without explicit
morphological features; monolingual transformers: Russian - ruBERT, Czech - slavicBERT,
Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

‘ ixa-mm ixa-gs morph flair mBERT xlm-r mono
en 95.16 95.13 92.92 93.42 93.50 93.56 93.39
es 97.59 97.45 90.35 90.29 90.27 90.26 90.34
ru 91.00 88.66 87.57 89.90 90.07 90.53 89.71
eu 85.33 86.31 89.03 88.76 87.79 88.15 87.62
cz 92.33 91.81 91.92 95.02 94.72 95.18 94.40
tr 80.33 80.50 84.74 83.51 84.40 84.90 84.46

Table 3
In-domain sentence accuracy results; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

| ixa-mm ixa-gs morph flair mBERT xlm-r mono
en 88.27 81.90 80.46 85.03 84.00 85.99 82.74
es 75.28 73.16 78.03 78.34 77.59 79.03 78.15
ru 45.73 33.40 55.27 54.47 58.25 61.03 55.67
eu 44.56 50.78 65.44 61.44 60.00 61.44 56.78
cz 69.45 56.17 81.10 83.21 84.99 87.62 83.69
tr 28.90 35.82 69.68 59.75 64.18 64.54 64.36

34



Toporkov and Agerri Morphological Information for Contextual Lemmatization

Table 4
Out-of-domain sentence accuracy results; monolingual transformers: Russian - ruBERT, Czech
- slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

| ixa-mm ixa-gs morph flair mBERT xlm-r mono
en 49.55 46.58 35.45 37.73 39.55 42.27 37.73
es 52.38 50.17 21.49 21.83 21.32 21.66 21.83
ru 26.87 21.26 22.69 27.03 27.18 28.26 26.64
eu 13.11 14.54 19.54 19.50 17.29 17.91 17.23
cz 29.00 25.00 36.00 48.00 40.00 47.00 45.00
tr 3.00 7.00 8.00 7.00 9.00 10.00 8.00

Table 5

Overall in-domain lemmatization results (reversed setting) for models with and without
explicit morphological features; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

| ixa-mm  ixa-gs morph mBERT  xlm-r mono base UDPipe
en 97.56 97.12 97.78 97.19 97.70 96.90 97.41 98.63
es 98.70 98.53 98.98 99.14 99.19 99.23 98.54 99.46
ru 96.76 96.84 96.93 98.66 98.93 98.67 95.92 98.92
cz 89.59 88.03 93.11 93.01 93.06 93.37 93.58 98.13
tr 7.7 78.33 87.02 83.40 85.07 82.56 86.02 89.03

Table 6

Overall out-of-domain lemmatization results (reversed setting) for models with and without
explicit morphological features; monolingual transformers: Russian - ruBERT, Czech -
slavicBERT, Basque -BERTeus, Turkish - BERTurk, English - RoBERTa, Spanish - BETO.

| ixa-mm ixa-gs morph mBERT xlm-r mono
en 91.22 90.55 88.97 90.80 91.21 90.94
es 87.90 87.47 87.50 87.51 87.65 87.33
ru 85.37 86.25 86.10 87.51 88.43 87.64
cz 86.09 83.94 89.13 89.73 90.10 89.17
tr 70.61 70.95 81.03 77.01 78.22 76.87
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